Search results

1 – 10 of over 3000
Article
Publication date: 1 March 2005

Norma J. Dowell

To review the history behind and steps taken to inventory and build search/edit modules for a database containing the Iowa State University Library's extensive collection of…

Abstract

Purpose

To review the history behind and steps taken to inventory and build search/edit modules for a database containing the Iowa State University Library's extensive collection of American National Standards Institute (ANSI) standards. Design/methodology/approach – Iowa State University built a database inventory of the ANSI collection of standards through the use of Microsoft Excel and Oracle production software. The collection was inventoried and input into an Excel database, then converted into a web‐based search engine using Oracle software. Edit modules were developed to allow for adding to the database, and updating and correcting existing records.

Findings

With the addition of this search engine and edit module, the task of keeping records up to date and keeping patrons informed as to the availability of standards within the ISU collection has been greatly improved.

Practical implications

The implications for this form of database suggest it could be introduced into other major research libraries with large collections of uncatalogued literature utilizing similar software and expertise. This was a local concern that could have a broad impact on the way ANSI standards are inventoried and searched in libraries.

Originality/value

The library that possesses a large collection of work under a single call number that is not inventoried and is looking for solutions for improved patron access will find this information valuable.

Details

Collection Building, vol. 24 no. 1
Type: Research Article
ISSN: 0160-4953

Keywords

Article
Publication date: 4 January 2016

Pankaj V Katariya and Subrata Kumar Panda

The purpose of this paper is to develop a general mathematical model for laminated curved structure of different geometries using higher-order shear deformation theory to evaluate…

Abstract

Purpose

The purpose of this paper is to develop a general mathematical model for laminated curved structure of different geometries using higher-order shear deformation theory to evaluate in-plane and out of plane shear stress and strains correctly. Subsequently, the model has to be validated by comparing the responses with developed simulation model (ANSYS) as well as available published literature. It is also proposed to analyse thermal buckling load parameter of laminated structures using Green–Lagrange type non-linear strains for excess thermal distortion under uniform temperature loading.

Design/methodology/approach

Laminated structures known for their flexibility as compared to conventional material and the deformation behaviour are greatly affected due to combined thermal/aerodynamic environment. The vibration/buckling behaviour of shell structures are very different than that of the plate structures due to their curvature effect. To model the exact behaviour of laminated structures mathematically, a general mathematical model is developed for laminated shell geometries. The responses are evaluated numerically using a finite element model-based computer code developed in MATLAB environment. Subsequently, a simulation model has been developed in ANSYS using ANSYS parametric design language code to evaluate the responses.

Findings

Vibration and thermal buckling responses of laminated composite curved panels have been obtained based on proposed model through a customised computer code in MATLAB environment and ANSYS simulation model using ANSYS parametric design language code. The convergence behaviour are tested and compared with those available in published literature and ANSYS results. Finally, the investigation has been extended to examine the effect of different parameters (thickness ratios, curvature ratios, modular ratios, number of layers and support conditions) on the free vibration and thermal buckling responses of laminated curved structures.

Practical implications

The present paper intends to give sufficient amount of numerical experimentation, which may lead to help in designing of finished product made up of laminated composites. Most of the aerospace, space research and defence organisation intend to develop low cost and high durable products for real hazard conditions by taking combined loading and environmental conditions. Further, case studies might lead to a lighter design of the laminated composite panels used in high-performance systems, where the weight reduction is the major parameter, such as aerospace, space craft and missile structures.

Originality/value

In this analysis, the geometrical distortion due to temperature is being introduced through Green–Lagrange sense in the framework of higher-order shear deformation theory for different types of laminated shells (cylindrical/spherical/hyperboloid/elliptical). A simulation-based model is developed using ANSYS parametric design language in ANSYS environment for different geometries and loading condition and compared with the numerical model.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 8 March 2023

Jordi Vila-Pérez, Matteo Giacomini and Antonio Huerta

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using…

Abstract

Purpose

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks.

Design/methodology/approach

The work presents a detailed comparison with reference solutions published in the literature –when available– and numerical results computed using a commercial cell-centred finite volume software.

Findings

The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%.

Originality/value

The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2022

Parvathidevi A. and Naga Satish Kumar Ch

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict…

Abstract

Purpose

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict the thermal conductivity using concrete density. As these simulation and regression analyses are essential tools in designing the thermal insulation concretes with various densities, they sequentially reduce the associated time, effort and cost.

Design/methodology/approach

Two grades of concretes were taken for thermal analysis. They were designed by replacing the natural fine aggregates with thermal insulation aggregates: expanded polystyrene, exfoliated vermiculite and light expanded clay. Density, temperature difference, specific heat capacity, thermal conductivity and time were measured by conducting experiments. This data was used to simulate concrete slabs in ANSYS. Regression analysis was performed to obtain the relation between density and thermal conductivity. Finally, the quality of the predicted regression equations was assessed using root mean square error (RMSE), mean absolute error (MAE), integral absolute error (IAE) and normal efficiency (NE).

Findings

ANSYS analysis on concrete slabs accurately estimates the thermal behavior of concrete, with lesser error value ranges between 0.19 and 7.92%. Further, the developed regression equations proved accurate with lower values of RMSE (0.013 to 0.089), MAE (0.009 to 0.088); IAE (0.216 to 5.828%) and higher values of NE (94.16 to 99.97%).

Originality/value

The thermal analysis accurately simulates the experimental transfer of heat across the concrete slab. Obtained regression equations proved helpful while designing the thermal insulation concrete.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 April 2002

188

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 20 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess…

Abstract

Purpose

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess the load-carrying capacity of reinforced concrete (RC) beams under two-point monotonic static loadings.

Design/methodology/approach

Four quarter-size FE models with load and geometry symmetry conditions were constructed, the load-bearing capacity and associated mid-span deflections at critical points are verified against the full-scale experimental RC beams available in the literature. These developed FE models incorporated the tension stiffening effects and bond–slip behaviour. Theoretical analyses based on Indian standard code IS: 456–2000 and ACI 318–19 were also carried to verify the experimental and numerical predicted moments at critical loading points.

Findings

The load-deflection curves predicted through FE models exhibit closer corroboration with the experimental curves throughout the loading history. The contour plots for deflections, concrete principal stresses, reinforcement yield stresses are satisfactorily predicted by the FE models, which reveal the complete information of nonlinear behaviour of RC beams. The developed model well captured the initial and progressive crack patterns at each load increments.

Practical implications

The FE modelling is an efficient, valid and economical tool that is an alternative to the expensive experimental program and can be used to explore, analyse and fully understand the nonlinear response of RC beams under static loadings.

Originality/value

The ultimate moment capacity evaluated based on ACI 318–19 code provision show a better correlation with the experimental data as compared to the IS: 456–2000 code provision. The ultimate loads and associated centre-span deflections predicted by RN-2, RN-3, RB-12 and RB-16 FE model show a discrepancy of 1.66 and –0.49%, –4.68 and –0.60%, –9.38 and –14.53% and –4.37 and 4.21%, respectively, against the experimental results, which reveals that the developed ANSYS FE models predict consistent results and achieved a reasonable agreement with the experimental data.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 September 2019

Cesar Martin Venier, Andrés Reyes Urrutia, Juan Pablo Capossio, Jan Baeyens and Germán Mazza

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB…

Abstract

Purpose

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles.

Design/methodology/approach

For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups.

Findings

The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities.

Originality/value

A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 August 2012

A. Sellitto, R. Borrelli, F. Caputo, A. Riccio and F. Scaramuzzino

The purpose of this paper is to investigate and to assess the capabilities of the most common finite element (FE)‐based tools to deal with global‐local analysis. Two kinds of…

Abstract

Purpose

The purpose of this paper is to investigate and to assess the capabilities of the most common finite element (FE)‐based tools to deal with global‐local analysis. Two kinds of coupling were investigated: shell to shell and shell to solid.

Design/methodology/approach

The issue of connecting non‐matching FE global and local models, characterized by different mesh refinements and/or different element types, was addressed by introducing appropriate kinematic constraints on the nodes at the interfaces. The coupling techniques available in the three FE‐based codes (ABAQUS®, NASTRAN® and ANSYS®), were assessed by applying them on a common numerical test case (non‐linear buckling analysis of a square plate). Results of the global‐local simulations were compared to the results obtained for relevant reference solutions.

Findings

The continuity of displacements and stresses across the interface between global and local models and the influence of the presence of the local model on the global model solution were used as parameters to test the quality of the results. It was observed that the tools implemented in the different codes provide different results. The results characterized by a higher quality were found by using the Multi Point Constraint available in ABAQUS®.

Originality/value

When dealing with complex structures, multi‐scale (global‐local) approaches are commonly adopted to optimize the computational cost by increasing mesh refinements and/or introducing elements with different formulations in specific region of the structures identified as “local model”. In this paper an overview of the coupling tools available in the main commercial FE code is given.

Details

International Journal of Structural Integrity, vol. 3 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2021

Abror Abror, Dina Patrisia, Yunita Engriani, Maznah Wan Omar, Yunia Wardi, Nazirul Mubin Bin Mohd Noor, Sarah Sabir Sabir Ahmad and Mukhamad Najib

This study aims to examine the relationship between perceived risk and tourists’ trust. It also investigates the role of perceived value as a mediating variable on the link…

Abstract

Purpose

This study aims to examine the relationship between perceived risk and tourists’ trust. It also investigates the role of perceived value as a mediating variable on the link between perceived risk and trust. Moreover, the moderating role of religiosity on the link between perceived value and trust has also been highlighted.

Design/methodology/approach

The research population is all tourists who have visited West Sumatra Indonesia in the past two years. This research used a survey method using questionnaires and used purposive sampling as the sampling method. It collected 400 responses and after some preliminary tests, 352 usable responses have been analyzed. The authors used a covariance-based structural equation model using AMOS 24 as the data analysis tool.

Findings

This quantitative research found that perceived risk dimensions (health, environmental and financial risk) have significant impacts on perceived value. Perceived risk dimensions also have significant effects on trust except for health risk. It also found that perceived value has a significant impact on trust and finally, religiosity which has a significant moderating impact on the relationship between perceived value and trust.

Research limitations/implications

This study is only one country study; hence, it has limited finding generalization. It needs to be expanded to other countries such as Southeast Asia countries. It only used three antecedents of trust, therefore, for future research; it might be extended to other antecedents such as cultural value, tourist efficacy and also some consequences of trust such as revisit intention and customer involvement. Finally, this is a cross-sectional study; hence, for future research, it might be expanded to a longitudinal study where the results are more generalized.

Practical implications

Trust will lead to tourist loyalty. Therefore, to establish trust, the managers need to provide the best services with pay attention to the tourist perceived risk. Moreover, it found that perceived risks will lead to tourists’ perceived value. Accordingly, to increase the tourist perceived value, the tourist destination managers have to minimize risk or uncertainty in the tourist destination such as environmental and health risk in the tourist destination. Finally, religiosity will strengthen the tourist trust, hence; the managers can attract and serve high religiosity tourists with Halal standard products and services.

Originality/value

This study has examined the relationship between perceived risk dimensions and perceived value which is not investigated in the previous studies. It also examined the mediating roles of perceived value on the link between perceived risk dimensions and trust. These mediating roles have not been addressed yet previously. Finally, it has also revealed a significant moderating effect of religiosity on the link between perceived value and trust which is neglected previously.

Details

Journal of Islamic Marketing, vol. 13 no. 12
Type: Research Article
ISSN: 1759-0833

Keywords

1 – 10 of over 3000