Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of 618
To view the access options for this content please click here
Article
Publication date: 20 April 2015

Numerical approaches to stability analysis of cylindrical composite shells based on load imperfections

Nikolay Asmolovskiy, Anton Tkachuk and Manfred Bischoff

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure…

HTML
PDF (1.4 MB)

Abstract

Purpose

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure and material properties more efficiently. Due to the large variety of design variables, for example laminate layup in composite structures, a prohibitively large number of tests would be required for experimental assessment, and thus reliable numerical techniques are of particular interest. The purpose of this paper is to analyze different methods of numerical buckling load estimation, formulate simulation procedures suitable for commercial software and give recommendations regarding their application. All investigations have been carried out for cylindrical composite shells; however similar approaches are feasible for other structures as well.

Design/methodology/approach

The authors develop a concept to apply artificial load imperfections with the aim to estimate as good as possible lower bounds for the buckling loads of shells for which the actual physical imperfections are not known. Single and triple perturbation load approach, global and local dynamic perturbation approach and path following techniques are applied to the analysis of a cylindrical composite shell with known buckling characteristics. Results of simulations are compared with published experimental data.

Findings

A single perturbation load approach is reproduced and modified. Buckling behavior for negative values of the perturbation load is examined and a pattern similar to a positive perturbation load is observed. Simulations with three perturbation forces show a decreased (i. e. more critical) value of the buckling load compared to the single perturbation load approach. Global and local dynamic perturbation approaches exhibit a behavior suitable for lower bound estimation for structures with arbitrary geometries.

Originality/value

Various load imperfection approaches to buckling load estimation are validated and compared. All investigated methods do not require knowledge of the real geometrical imperfections of the structure. Simulations were performed using a commercial finite element code. Investigations of sensitivity with respect to a single perturbation load are extended to the negative range of the perturbation load amplitude. A specific pattern for a global perturbation approach was developed, and based on it a novel simulation procedure is proposed.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/EC-10-2013-0246
ISSN: 0264-4401

Keywords

  • Arc-length method
  • Buckling load
  • Dynamic perturbation load
  • Knock-down factor
  • Single perturbation load approach

To view the access options for this content please click here
Article
Publication date: 4 November 2019

Derivation of knockdown factors for grid-stiffened cylinders considering various shell thickness ratios

Chang-Hoon Sim, Han-Il Kim, Jae-Sang Park and Keejoo Lee

The purpose of this paper is to derive knockdown factor functions in terms of a shell thickness ratio (i.e. the ratio of radius to thickness) for conventional orthogrid…

HTML
PDF (3.4 MB)

Abstract

Purpose

The purpose of this paper is to derive knockdown factor functions in terms of a shell thickness ratio (i.e. the ratio of radius to thickness) for conventional orthogrid and hybrid-grid stiffened cylinders for the lightweight design of space launch vehicles.

Design/methodology/approach

The shell knockdown factors of grid-stiffened cylinders under axial compressive loads are derived numerically considering various shell thickness ratios. Two grid systems using stiffeners – conventional orthogrid and hybrid-grid systems – are used for the grid-stiffened cylinders. The hybrid-grid stiffened cylinder uses major and minor stiffeners having two different cross-sectional areas. For modeling grid-stiffened cylinders with various thickness ratios, the effective thickness (teff) of the cylinders is kept constant, and the radius of the cylinder is varied. Thickness ratios of 100, 192 and 300 are considered for the orthogrid stiffened cylinder, and 100, 160, 200 and 300 for the hybrid-grid stiffened cylinder. Postbuckling analyses of grid-stiffened cylinders are conducted using a commercial nonlinear finite element analysis code, ABAQUS, to derive the shell knockdown factor. The single perturbation load approach is applied to represent the geometrical initial imperfection of a cylinder. Knockdown factors are derived for both the conventional orthogrid and hybrid-grid stiffened cylinders for different shell thickness ratios. Knockdown factor functions in terms of shell thickness ratio are obtained by curve fitting with the derived shell knockdown factors for the two grid-stiffened cylinders.

Findings

For the two grid-stiffened cylinders, the derived shell knockdown factors are all higher than the previous NASA’s shell knockdown factors for various shell thickness ratios, ranging from 100 to 400. Therefore, the shell knockdown factors derived in this study may facilitate in the development of lightweight structures of space launch vehicles from the aspect of buckling design. For different shell thickness ratios of up to 500, the knockdown factor of the hybrid-grid stiffened cylinder is higher than that of the conventional orthogrid stiffened cylinder. Therefore, it is concluded that the hybrid-grid stiffened cylinder is more efficient than the conventional orthogrid-stiffened cylinder from the perspective of buckling design.

Practical implications

The obtained knockdown factor functions may provide the design criteria for lightweight cylindrical structures of space launch vehicles.

Originality/value

Derivation of shell knockdown factors of hybrid-grid stiffened cylinders considering various shell thickness ratios is attempted for the first time in this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
DOI: https://doi.org/10.1108/AEAT-11-2018-0272
ISSN: 1748-8842

Keywords

  • Shell thickness ratio
  • Buckling knockdown factor
  • Orthogrid stiffened cylinder
  • Hybrid-grid stiffened cylinder
  • Postbuckling analysis

To view the access options for this content please click here
Article
Publication date: 1 March 1959

The Analysis of Fuselages of Arbitrary Cross‐section and Taper

J.H. Argyris and S. Kelsey

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the…

HTML
PDF (2.2 MB)

Abstract

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the structural analysis of stressed skin fuselages for application in conjunction with the digital computer. The theory is a development of the matrix force method which permits a close integration of the analysis and the programming for a computer operating with a matrix interpretive scheme. The structural geometry covered by the analysis is sufficiently arbitrary to include most cases encountered in practice, and allows for non‐conical taper, double‐cell cross‐sections and doubly connected rings. An attempt has been made to produce a highly standardized procedure requiring as input information only the simplest geometrical and elastic data. An essential feature is the use of the elimination and modification technique subsequent to the main analysis of the regularized structure in which all cutouts have been filled in. Current Summary A critical historical appraisal of previous work in the Western World on fuselage analysis is given in the present issue together with an outline of the ideas underlying the new theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/eb033088
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 1 June 1997

Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992‐1995)

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

HTML
PDF (441 KB)

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/02644409710178494
ISSN: 0264-4401

Keywords

  • Bibliographies
  • Finite element method

To view the access options for this content please click here
Article
Publication date: 8 July 2019

Study on multi-loop control strategy of three-shaft gas turbine for electricity generation

Zilai Zhang, Shusheng Zang and Bing Ge

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas…

HTML
PDF (1.3 MB)

Abstract

Purpose

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas turbine for electricity generation.

Design/methodology/approach

In this paper, the dynamic performance model of the three-shaft gas turbine is established and developed. A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. Single-loop control system, feed-forward feedback control system and cascade system are assessed to control the engine during transient operation.

Findings

A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. According to the results shown, the cascade control system is most satisfactory due to its fastest response and the best stability and robustness.

Originality/value

The method of variable partial linearization is adopted to make the dynamic simulation of the model achieve higher precision, better steady state and less computation time. This paper provides a theoretical study for the multi-loop control system of a marine three-shaft gas turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
DOI: https://doi.org/10.1108/AEAT-05-2018-0149
ISSN: 1748-8842

Keywords

  • Control design
  • Electric generation
  • Simulation program
  • Three-shaft gas turbine

To view the access options for this content please click here
Article
Publication date: 1 April 1961

The Analysis of Fuselages of Arbitrary Cross‐section and Taper: A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer

J.H. Argyris and S. Kelsey

The general theory of the cut‐out and modification analysis is reviewed and extended for a structure involving primary, secondary and tertiary redundancies. Some important…

HTML
PDF (1.4 MB)

Abstract

The general theory of the cut‐out and modification analysis is reviewed and extended for a structure involving primary, secondary and tertiary redundancies. Some important points of practical application are illustrated on simple examples and the influence of the form chosen for the unassembled flexibility matrix is discussed. The question of the selection and number of actual cuts which will simulate a given major cut‐out is treated in general and illustrated on a simple type of structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/eb033398
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 14 November 2018

Efficient structural analysis of gas turbine blades

Timo Rogge, Ricarda Berger, Linus Pohle, Raimund Rolfes and Jörg Wallaschek

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas…

HTML
PDF (1.5 MB)

Abstract

Purpose

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine blades concentrate on the analysis and evaluation of starting dynamics and fatigue strength. Besides, the influence of structural mistuning on the vibration characteristics of the single blade is analyzed and discussed.

Design/methodology/approach

A basic computation cycle is generated from a flight profile to describe the operating history of the gas turbine blade properly. Within an approximation approach for high-frequency vibrations, maximum vibration amplitudes are computed by superposition of stationary frequency responses by means of weighting functions. In addition, a two-way coupling approach determines the influence of structural mistuning on the vibration of a single blade. Fatigue strength of gas turbine blades is analyzed with a semi-analytical approach. The progressive damage analysis is based on MINER’s damage accumulation assuming a quasi-stable behavior of the structure.

Findings

The application to a gas turbine blade shows the computational capabilities of the approach presented. Structural characteristics are obtained by robust and stable computations using a detailed finite element model considering different load conditions. A high quality of results is realized while reducing the numerical costs significantly.

Research limitations/implications

The method used for analyzing the starting dynamics is based on the assumption of a quasi-static state. For structures with a sufficiently high stiffness, such as the gas turbine blades in the present work, this procedure is justified. The fatigue damage approach relies on the existence of a quasi-stable cyclic stress condition, which in general occurs for isotropic materials, as is the case for gas turbine blades.

Practical implications

Owing to the use of efficient analysis methods, a fast evaluation of the gas turbine blade within a stochastic analysis is feasible.

Originality/value

The fast numerical methods and the use of the full finite element model enable performing a structural analysis of any blade structure with a high quality of results.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
DOI: https://doi.org/10.1108/AEAT-05-2016-0085
ISSN: 1748-8842

Keywords

  • Efficient approaches
  • Fatigue strength
  • Gas turbine blade
  • Starting dynamics
  • Stochastic analysis
  • Structural mistuning

To view the access options for this content please click here
Article
Publication date: 10 August 2020

Double-boundary interval fault-tolerant control for a multi-vector propulsion ROV with thruster failure

Liqin Zhou, Changbin Wang, Lin Li, Chengxi Zhang, Dalei Song and Chong Li

A novel fault-tolerant control (FTC) method is proposed to assure the stability of the remote-operated vehicle (ROV) by considering the thruster failure-induced model…

HTML
PDF (2.2 MB)

Abstract

Purpose

A novel fault-tolerant control (FTC) method is proposed to assure the stability of the remote-operated vehicle (ROV) by considering the thruster failure-induced model perturbations. The stability of the ROV with failures is guaranteed and optimized with the determined model perturbation set. The effectiveness of the double-boundary interval fault-tolerant control (DBIFTC) is verified through the experiments and proves that the stability is well maintained, which demonstrates a decent performance.

Design/methodology/approach

This paper studies a control problem for a multi-vector propulsion ROV by using the DBIFTC method in the presence of thruster failure and external disturbances. The ROV kinematics and dynamical models with multi-vector-arranged thruster failure are investigated and formulated for control system design.

Findings

In this paper, the authors address the FTC problem of ROV with multi-vector thrusters and propose a DBIFTC scheme. The advantage is that as the kinematic system model of ROV is preanalyzed and identified, the DBIFTC becomes more effective. The mathematical stability of the system under the proposed control scheme can be guaranteed.

Research limitations/implications

The ROV model used in this paper is based on the system identification of experimental data. Although this model has real experimental value and physical significance, the accuracy can be further improved.

Practical implications

Cable-controlled underwater ROVs are widely used in military missions and scientific research because of their flexibility, sufficient load capacity and real-time information transmission characteristics. The DBIFTC method proposed in this paper can effectively reduce the problem of underwater vehicle under propeller failure or external disturbance and save unnecessary cost.

Social implications

The DBIFTC method proposed in this paper can ensure the attitude stability of ROV or other underwater equipment operating in the event of propeller failure or external disturbance. In this way, the robot can better perform undersea work and tasks.

Originality/value

The kinematics and failure mechanisms of the ROV with multi-vector propulsion system are investigated and established. An optimized DBIFTC scheme is investigated to stabilize ROV yaw attitude under the thruster failure condition. The feasibility and effectiveness of the DBIFTC is experimentally validated.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IR-04-2020-0084
ISSN: 0143-991X

Keywords

  • ROV
  • Thruster failure
  • Interval control
  • Multi-vector arrangement
  • Fault-tolerant control

To view the access options for this content please click here
Book part
Publication date: 15 December 1998

Incremental Traffic Assignment: A Perturbation Approach

D. Kupiszewska and D. Van Vliet

This paper develops a new algorithmic approach to equilibrium road traffic assignment which, by directly estimating differences, can more accurately estimate the impact of…

HTML
PDF (928 KB)
EPUB (476 KB)

Abstract

This paper develops a new algorithmic approach to equilibrium road traffic assignment which, by directly estimating differences, can more accurately estimate the impact of (relatively) small traffic schemes or changes in the demand pattern. Comparing the outputs of two independent traffic assignments to “with” and “without” scheme networks very often masks the effect of the scheme due to the “noise” in the resulting solutions. By contrast an incremental approach attempts to directly estimate the changes in link flows - and hence costs - resulting from (relatively) small perturbations to the network and/or trip matrix. The algorithms are based firstly on “route flows” as opposed to “link flows“, and secondly, they use a variant of the standard Frank-Wolfe algorithm known as “Social Pressure” which gives a greater weight to those O-D path flows whose costs are well above the minimum costs as opposed to those which are already at or near minimum. Tests on a set of five “real” networks demonstrate that the Social Pressure Algorithm is marginally better than Frank-Wolfe for single assignments but is very much faster and more accurate in predicting the impact of small network changes.

Details

Mathematics in Transport Planning and Control
Type: Book
DOI: https://doi.org/10.1108/9780585474182-015
ISBN: 978-0-08-043430-8

To view the access options for this content please click here
Article
Publication date: 1 June 2000

CAD and optimization techniques

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

HTML
PDF (2.4 MB)

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/03321640010733395
ISSN: 0332-1649

Keywords

  • Optimization
  • Algorithms
  • Electrical engineering
  • CAD
  • CAE

Access
Only content I have access to
Only Open Access
Year
  • Last week (1)
  • Last month (3)
  • Last 3 months (13)
  • Last 6 months (19)
  • Last 12 months (54)
  • All dates (618)
Content type
  • Article (573)
  • Book part (26)
  • Earlycite article (19)
1 – 10 of 618
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here