Search results

1 – 10 of 16
Article
Publication date: 1 February 2021

Rudranarayan Kandi, Pulak Mohan Pandey, Misba Majood and Sujata Mohanty

This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing.

Abstract

Purpose

This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing.

Design/methodology/approach

The manufacturing approach involved extrusion of polymeric ink over a rotating predefined pattern to construct customized tubular structure of polycaprolactone (PCL) and polyurethane (PU). Dimensional deviation in thickness of scaffolds were calculated for various layer thicknesses of 3D printing. Physical and chemical properties of scaffolds were investigated by scanning electron microscope (SEM), contact angle measurement, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). Mechanical characterizations were performed, and the results were compared to the reported properties of human native trachea from previous reports. Additionally, in vitro cytotoxicity of the fabricated scaffolds was studied in terms of cell proliferation, cell adhesion and hemagglutination assay.

Findings

The developed fabrication route was flexible and accurate by printing customized tubular scaffolds of various scales. Physiochemical results showed good miscibility of PCL/PU blend, and decrease in crystalline nature of blend with the addition of PU. Preliminary mechanical assessments illustrated comparable mechanical properties with the native human trachea. Longitudinal compression test reported outstanding strength and flexibility to maintain an unobstructed lumen, necessary for the patency. Furthermore, the scaffolds were found to be biocompatible to promote cell adhesion and proliferation from the in vitro cytotoxicity results.

Practical implications

The attempt can potentially meet the demand for flexible tubular scaffolds that ease the concerns such as availability of suitable organ donors.

Originality/value

3D printing over accurate predefined templates to fabricate customized grafts gives novelty to the present method. Various customized scaffolds were compared with conventional cylindrical scaffold in terms of flexibility.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 March 2023

Arun Kumar, Pulak Mohan Pandey, Sunil Jha and Shib Shankar Banerjee

This paper aims to discuss the successful 3D printing of styrene–ethylene–butylene–styrene (SEBS) block copolymers using solvent-cast 3D printing (SC-3DP) technique.

Abstract

Purpose

This paper aims to discuss the successful 3D printing of styrene–ethylene–butylene–styrene (SEBS) block copolymers using solvent-cast 3D printing (SC-3DP) technique.

Design/methodology/approach

Three different Kraton grade SEBS block copolymers were used to prepare viscous polymer solutions (ink) in three different solvents, namely, toluene, cyclopentane and tetrahydrofuran. Hansen solubility parameters (HSPs) were taken into account to understand the solvent–polymer interactions. Ultraviolet–visible spectroscopy was used to analyze transmittance behavior of different inks. Printability of ink samples was compared in terms of shape retention capability, solvent evaporation and shear viscosity. Dimensional deviations in 3D-printed parts were evaluated in terms of percentage shrinkage. Surface morphology of 3D-printed parts was investigated by scanning electron microscope. In addition, mechanical properties and rheology of the SC-3D-printed SEBS samples were also investigated.

Findings

HSP analysis revealed toluene to be the most suitable solvent for SC-3DP. Cyclopentane showed a strong preferential solubility toward the ethylene–butylene block. Microscopic surface cracks were present on tetrahydrofuran ink-based 3D-printed samples. SC-3D-printed samples exhibited high elongation at break (up to 2,200%) and low tension set (up to 9%).

Practical implications

SC-3DP proves to be an effective fabrication route for complex SEBS parts overcoming the challenges associated with fused deposition modeling.

Originality/value

To the best of authors’ knowledge, this is the first report investigating the effect of different solvents on physicomechanical properties of SC-3D-printed SEBS block copolymer samples.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 January 2020

Li Wu, Xinxin Li, Tianmin Guan, Yong Chen and Chunwei Qi

The 3 D bioprinting technology is used to prepare the tissue engineering scaffold with precise structures for the cell proliferation and differentiation.

Abstract

Purpose

The 3 D bioprinting technology is used to prepare the tissue engineering scaffold with precise structures for the cell proliferation and differentiation.

Design/methodology/approach

According to the characteristics of the ideal tissue engineering scaffold, the microstructural design of the tissue engineering scaffold is carried out. The bioprinter is used to fabricate the tissue engineering scaffold with different structures and spacing sizes. Finally, the scaffold with good connectivity is achieved and used to cell PC12 culture.

Findings

The results show that the pore structure with the line spacing of 1 mm was the best for cell culture, and the survival rate of the inoculated cells PC12 is as high as 90%. The influence of the pore shape on the cell survival is not evidence.

Originality/value

This study shows that tissue engineering scaffolds prepared by 3 D bioprinting have graded structure for three-dimensional cell culture, which lays the foundation for the later detection of drug resistance.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2020

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Arjun Subramanian, Rahul Sahay, Amutha Cinappan and Seeram Ramakrishna

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical…

1415

Abstract

Purpose

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine).

Design/methodology/approach

This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript.

Findings

3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications.

Originality/value

This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 February 2022

Jasvinder Singh, Pulak Mohan Pandey, Tejinder Kaur and Neetu Singh

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using…

Abstract

Purpose

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using aminolysis reaction.

Design/methodology/approach

The iron pentacarbonyl powder and poly-ɛ-caprolactone blend (PCIP) were used to print stent designs of Art18z, Palmaz-Schatz and Abbott Bvs1.1. The properties of antithrombosis, anticoagulation and blood compatibility were introduced in the stents by conjugation of heparin drug via the aminolysis process. The aminolysis process was confirmed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy due to presence of amide group and nitrogen peak in the respective analysis. Biological studies were performed to depict the cell viability, hemocompatibility and antithrombotic properties. Besides, mechanical behaviors were analyzed to study the behavior of the stents under radial compression load and bending load.

Findings

The amount of heparin immobilized on the Art18z, Palmaz-Schatz and Abbott Bvs1.1 stents were 255 ± 27, 222 ± 30 and 212 ± 13 µg, respectively. The cell viability studies using L929 fibroblast cells confirmed the cytocompatibility of the stents. The heparinized SC3P printed stents displayed excellent thrombo-resistance, anticoagulation properties and hemocompatibility as confirmed by blood coagulation analysis, platelet adhesion test and hemolysis analysis. Besides, mechanical behavior was found in context of the real-life stents. All these assessments confirmed that the developed stents have the potential to be used in the real environment of coronary arteries.

Originality/value

Various customized shaped biodegradable stents were fabricated using 3D printing technique and encapsulated with heparin drug using aminolysis process.

Article
Publication date: 4 October 2018

Wangyu Liu, Dong Sun, Aimin Tang and Mingke Li

Hydrogel is an excellent material for the fabrication of porous scaffold by mask-prototyping method. Different from the common commercial resin, hydrogel is hydrophilic and…

Abstract

Purpose

Hydrogel is an excellent material for the fabrication of porous scaffold by mask-prototyping method. Different from the common commercial resin, hydrogel is hydrophilic and hyperelastic, so that it cannot bear the conventional post-curing process to improve its mechanical properties. The purpose of this paper is to put forward a method to improve the curing bonding strength at the weak juncture of the porous hydrogel scaffold.

Design/methodology/approach

The working curve of the resin was obtained through the single layer cure experiment, and the energy accumulation model has been set up by MATLAB. Aimed at the specificity of material, a new method of partial curing on different kind of structure has been proposed. Under the same condition, only the tn2 needs to be changed to fabricate different test specimens with different accumulated energy between two layers. The tensile test is carried out with the authors’ preferred equipment.

Findings

The analysis reveals that accumulated energy can be changed by adjusting the key parameters, and the tensile test shows that when the accumulated energy is bigger, the ultimate tensile strength is higher.

Research limitations/implications

Subject to the equipment accuracy and specificity of material, some errors coming from the experiment and test might exist, but the authors believe they will not change their findings and conclusions in this paper.

Practical implications

The research provides a method which is different from the common methods but friendlier to improve the bonding strength of the hydrogel scaffold.

Social implications

This work can help to adjust the mechanical property of the scaffold used in tissue engineering.

Originality/value

This method can improve the bonding strength at weak juncture and give a direction for the design of porous scaffold.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Shubham Shankar Mohol and Varun Sharma

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant…

Abstract

Purpose

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant research in the area of materials. This has led to the invention of Smart Materials (SMs). The 4D printing is basically 3D printing of these SMs. This paper aims to focus on novel materials and their useful application in various industries using the technology of 4D printing.

Design/methodology/approach

Research studies in 4D printing have increased since the time when this idea was first introduced in the year 2013. The present research study will deeply focus on the introduction to 4D printing, types of SMs and its application based on the various types of stimulus. The application of each type of SM has been explained along with its functioning with respect to the stimulus.

Findings

SMs have multiple functional applications pertaining to appropriate industries. The 4D printed parts have a distinctive capability to change its shape and self-assembly to carry out a specific function according to the requirement. Afterward, the fabricated part can recover to its 3D printed “memorized” shape once it is triggered by the stimulus.

Originality/value

The present study highlights the various capabilities of SMs, which is used as a raw material in 4D printing.

Graphical abstract

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 November 2018

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Rajkumar V. Patil, P.T. Perumal, Veluchamy Amutha Barathi, Kalpattu K. Balasubramanian, Seeram Ramakrishna and N.U. Maheshwari

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of…

Abstract

Purpose

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.

Design/methodology/approach

In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.

Findings

The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.

Originality/value

This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3808

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 16