Search results

1 – 10 of 93
Article
Publication date: 20 March 2018

Ilhem Ghodbane, Rochdi Kherrrat, Saida Zougar, Rim Lamari, Redouane Haddadji and Mohamed Saleh Medjram

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Abstract

Purpose

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Design/methodology/approach

The present sensor consists in the spatial coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of an ionophore (D2HPA), a polymer (polyvinylchloride [PVC]) and a plasticizer (dioctyl phthalate [DOP]). Several techniques have been used to characterize this sensor: the cyclic voltammetry, the electrochemical impedance spectroscopy and the optical microscopy. The sensibility, the selectivity and the kinetic study of a modified platinum electrode have been evaluated by cyclic voltammetry.

Findings

The obtained results reveal the possibility of a linear relationship between the current of reduction peaks and MG concentration. A linear response was obtained in a wide-concentration range that stretches from 10−5 to 10−13 mol L−1, with a good correlation coefficient (0.976) and a good detection limit of 5.74 × 10−14 mol L−1 (a signal-to-noise ratio of 3). In addition, the voltammetric response of modified electrode can be enhanced by adding a layer of Nafion membrane. Under this optimal condition, a linear relationship was obtained, with a correlation coefficient of 0.986 and a detection limit of 1.92 × 10−18 mol L−1.

Originality/value

In the present research, a convenient, inexpensive and reproducible method for the detection of MG was developed. The developed sensor is capable of competing against the conventional techniques in terms of speed, stability and economy.

Article
Publication date: 19 September 2019

Elbahi Djaalab, Mohamed Elhadi Samar, Saida Zougar and Rochdi Kherrat

A new electrochemical analysis based on ß-cyclodextrin (ß-CD) was developed for penicillin V (Peni-V) using polyaniline as a conducting polymer.

Abstract

Purpose

A new electrochemical analysis based on ß-cyclodextrin (ß-CD) was developed for penicillin V (Peni-V) using polyaniline as a conducting polymer.

Design/methodology/approach

The preparation of modified electrode involves the incorporation of β-CD with membrane of polyaniline. Polyaniline, incorporating β-CD, was prepared by electrochemical polymerization method in a medium of hypochloride. Cyclic voltammetry and electrochemical impedance have been used to characterize this sensor. The detection and the kinetic study of modified platinum electrode are evaluated.

Findings

Results clearly indicate that β-CDs interfere with the polymerization mechanism with an inhibition factor. The inclusion phenomenon of β-CDs has been studied and applied to detect Peni-V. The principle of this electrochemical sensor is based on the chemical properties of β-CD, which were studied using the cyclic voltammetric method and impedance spectroscopy. The electrochemical behavior of Peni-V at concentrations between 10–8 and 10–2 M was measured versus Ag/AgCl at pH 7.4 and 30°C in a phosphate alkaline buffer. Relationship of Peni-V concentration in logarithmic mathematical form with current in potentiometric method and with resistance in impedimetric method were obtained.

Originality/value

The present study showed that the Pt electrode modified with Polyaniline–β-CD was an excellent candidate for sensitive penicillin analysis. The proposed electroanalytical technique is rapid, simple and inexpensive.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 December 2020

Ming Liu, Jun Li, Danping Li and Lierui Zheng

At present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola…

Abstract

Purpose

At present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola tooth”. However, the influence of cola on the corrosion resistance of passive film of TiA10 alloy restorative materials is rarely reported. The purpose of this study was to analysis the corrosion resistance, composition of the passive film of TA10 alloy in different concentrations of Cola.

Design/methodology/approach

The passive behavior of TA10 alloy in artificial saliva (AS) and Cola was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, Mott-Schottky techniques and combined with X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES) surface analysis.

Findings

With the increase of cola content, the self-corrosion current density of the alloy increases sharply, and the corrosion resistance of the passive film is the best in AS, while Rp in cola is reduced to half of that in AS. The thickness of the passive film in AS, AS +cola and cola is about 9.5 nm, 7.5 nm and 6 nm, respectively. The passive film in cola has more defects and the carrier density is 1.55 times as high as that in AS. Cola can weaken the formation process of the protected oxide, promote the formation of high valence Ti-oxides and increase the content of Mo-oxides in the passive film.

Originality/value

These results have important guiding significance for the safe use of the alloy in the complex oral environments.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 June 2020

Ilhem Ghodbane, Saida Zougar, Rim Lamari and Rochdi Kherrrat

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Abstract

Purpose

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Design/methodology/approach

This sensor is obtained through the coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of a receptor: β-cyclodextrin (β-CD), a polymer (polyvinylchloride) and a plasticizer (dioctylphtalate). Cyclic voltammetry method (CV) was used to investigate the electrical properties of this electrochemical sensor. The effect of the experimental parameters such as dye initial concentration, scan rate, interfering elements presence and additional Nafion membrane presence was investigated in this paper.

Findings

The results are interesting because the developed sensor gives a linear response in concentrations range of 10−13 M–10−3 M with a good correlation coefficient of 0.979 and a detection limit of 10−13 M, which reflects the sensitivity of this sensor to the target element. The sensibility value is equal to 2. 40 µA mol−1 L.

Originality/value

The present study has shown that the modified electrode is a very good candidate in terms of price, sensibility and reproducibility for the construction of the sensitive sensor for the control of wastewater containing methylene blue.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 August 2020

Xiaochen Hu, Pei Zhang, Yong Zhou and Fuan Yan

The purpose of this paper is to reveal the mechanism of nitrite (NO2) for the surface passivation of carbon steels in acidic environments through investigating the influences of…

Abstract

Purpose

The purpose of this paper is to reveal the mechanism of nitrite (NO2) for the surface passivation of carbon steels in acidic environments through investigating the influences of 0.01 mol/L NaNO2 addition on the corrosion and passivation behaviors of Q235 carbon steel in acidic phosphate buffer (APB) solutions (pH 2 to 6).

Design/methodology/approach

The electrochemical techniques including open circle potential evolution, potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry were applied.

Findings

In APB solutions without NO2, the Q235 steel presented the electrochemical behaviors of activation (A), activation-passivation-transpassivation and self-passivation-transpassivation at pH 2 to 4, pH 5 and pH 6, respectively; the corrosion rate decreased with the up of pH value, and the surface passivation occurred in the pH 5 and pH 6 solutions only: the anodic passivation at pH 5 and the spontaneous passivation at pH 6.

Originality/value

In APB solutions without NO2, the corrosion rate decreased with the up of pH value, and the surface passivation occurred in the pH 5 and pH 6 solutions only: the anodic passivation at pH 5 and the spontaneous passivation at pH 6. With the addition of 0.01 mol/L NaNO2, into APB solutions, the variation of corrosion rate showed the same rule, but the surface passivation occurred over the whole acidic pH range, including the anodic passivation at pH 2 to 4 and the spontaneous passivation at pH 5 to 6.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 September 2021

Leila Snani, Saida Zougar, Fatiha Benamia and Ilhem Ghodbane

The purpose of this paper is to study the immobilization of porcine pancreatic lipase (PPL), in an organic matrix by a covalent cross-linking method to sense propylparaben (PP…

Abstract

Purpose

The purpose of this paper is to study the immobilization of porcine pancreatic lipase (PPL), in an organic matrix by a covalent cross-linking method to sense propylparaben (PP) present in aqueous solution.

Design/methodology/approach

PPL immobilization was performed by the covalent cross-linking method, using bovine serum albumin (BSA) in the presence of saturated glutaraldehyde vapor (GA). The preparation of the enzymatic membrane involves the incorporation of porcine pancreatic lipase (PPL), bovine serum albumin (BSA) and glycerol into a phosphate buffer solution (PBS). Characterization of this sensor was performed by impedance spectroscopy (EIS) and scanning electron microscope (SEM). The effect of experimental conditions such as PPL activity, potential, scan rate, PP concentration, pH and presence of interfering elements were studied by cyclic voltammetry.

Findings

Under the optimal experimental conditions, a number of significant factors were optimized. The method exhibited good linearity in the range of 10–14 to 10–9 mol/L with a good correlation coefficient of 0.957, detection limit (LOD) of 3.66 × 10–15 mol/L and high sensitivity of 1.086 mA mol−1L. The authors also obtained a very good coverage rate of the surface equal to 91.44%, and hydrolytic activity of lipase is evaluated to 26.64 mmol min−1. The stability and the interference were also evaluated. The equivalent circuit used to explain the electrochemical behavior of modified electrode is a Randle circuit.

Practical implications

The main application of biosensors is the detection of biomolecules that are either indicators of a disease. For example, electrochemical biosensing techniques can be used as clinical tools to detect breast tumors, because these compounds (PP) were found in breast tumors.

Originality/value

The result registered in this paper indicates that the developed sensor is an efficient, fast, simple and inexpensive analytical tool that can be used for the analysis of water containing PP.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 July 2022

Bjorn John Stephen, Surabhi Suchanti, Devendra Jain, Harshdeep Dhaliwal, Vikram Sharma, Ramandeep Kaur, Rajeev Mishra and Abhijeet Singh

Neglected tropical diseases (NTDs) are a set of infectious diseases that primarily affect low-income countries situated near the equator. Effective diagnostic tools hold the key…

Abstract

Purpose

Neglected tropical diseases (NTDs) are a set of infectious diseases that primarily affect low-income countries situated near the equator. Effective diagnostic tools hold the key to stemming the spread of these infectious diseases. However, specificity is a major concern associated with current diagnostic protocols. In this regard, electrochemical deoxyribonucleic acid (DNA) biosensors could play a crucial role, as highlighted by renewed interest in their research. The purpose of this study was to highlight the current scenario for the design and development of biosensors for the detection of NTDs related pathogens. This review highlights the different types of factors involved and the modifications used to enhance sensor properties.

Design/methodology/approach

The authors discuss the potential of electrochemical DNA biosensors as efficient, affordable diagnostic tools for the detection of pathogens associated with NTDs by reviewing available literature. This study discusses the biosensor components, mainly the probe selection and type of electrodes used, and their potential to improve the overall design of the biosensor. Further, this study analyses the different nanomaterials used in NTD-based electrochemical DNA biosensors and discusses how their incorporation could improve the overall sensitivity and specificity of the biosensor design. Finally, this study examines the impact such techniques could have in the future on mass screening of NTDs.

Findings

The findings provide an in-depth analysis of electrochemical DNA biosensors for the detection of pathogens associated with NTDs.

Originality/value

This review provides an update on the different types and modifications of DNA biosensors that have been designed for the diagnosis of NTD-related pathogens.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 January 2009

Tuan Anh Nguyen and Xianming Shi

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

2155

Abstract

Purpose

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

Design/methodology/approach

Mortar samples were prepared with NaCl and one of three corrosion inhibitors, sodium nitrite, disodium β‐glycerophosphate, or N,N′‐dimethylethanolamine, admixed. After 28 days curing, all steel‐mortar samples were ponded with 3 percent NaCl solution and electrochemical impedance spectroscopy (EIS) measurements were conducted periodically during the first 48 days. After 60 days of ponding by 3 percent NaCl solution, field‐emission scanning electron microscopy (FESEM) analyses were conducted on the fracture surface of the steel‐mortar sample.

Findings

The FESEM results revealed that admixing chlorides and inhibitors in fresh mortar changed the morphology and cement hydration product of hardener mortar at the steel‐mortar interface. The EIS data indicated that all inhibitors increased the polarization resistance of steel, implying reduced corrosion rate of the steel over 48‐day exposures to salt ponding. 0.05 M N,N′‐dimethylethanolamine was the most effective corrosion inhibitor, followed by 0.5 M sodium nitrite; whereas 0.05 M disodium β‐glycerophosphate was a slower and less capable corrosion inhibitor. The admixing of inhibitors in fresh mortar consistently increased the capacitance and decreased the electrical resistance of hardened mortar. The effect of sodium nitrite inhibitor on the resistance of steel mortar interfacial film compensated that of corrosive NaCl by participating to the formation of a protective ferric oxide film.

Originality/value

The results reported shed light on the complex role of admixed salt and corrosion inhibitors in cement hydration and their implications on the durability of steel‐reinforced concrete.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2013

Hamid R. Aghayan, Evgueni V. Bordatchev and Jun Yang

The purpose of this paper is to develop new knowledge in experimental characterization of contaminants in engine lubricants, using surface plasmon resonance (SPR) sensing that can…

Abstract

Purpose

The purpose of this paper is to develop new knowledge in experimental characterization of contaminants in engine lubricants, using surface plasmon resonance (SPR) sensing that can be applicable for on‐line condition monitoring of lubricant quality and engine component performance.

Design/methodology/approach

The effect of change in optical properties (e.g. transparency, absorption, and refractive index) of engine lubricants caused by the introduction of contaminants, such as gasoline, coolant, and water, on the surface plasmon resonance characteristics is analyzed experimentally. In SPR measurement, variations in both the refractive index and absorption cause changes in the SPR curve, which is the dependence of reflectivity vs incidence angle. The SPR characteristics (e.g. refractivity) of engine lubricant contaminated by gasoline, water and coolant at different concentration are measured as a function of resonance angle and analyzed with respect to different concentration (1%‐10%) of contaminants. Also, pattern recognition analysis between fresh and used engine lubricants is performed, to show applicability of Bayesian classification methodology for on‐line monitoring and predicting engine lubricant condition.

Findings

It was shown experimentally that attenuation of surface plasmons due to introduction of contaminants to the engine lubricant leads to a noticeable change in resonance angle and reflectivity minimum of the SPR curve due to an increase in the dielectric permittivity. In addition, the changes in the SPR characteristics were observed between fresh and used engine lubricant, causing resonance angle and reflectivity minimum of the SPR curve to shift.

Practical implications

The knowledge generated in this study lays the informational basis to further develop an on‐line system for engine lubricant condition monitoring using miniaturized SPR sensors fully suitable for on board applications.

Originality/value

SPR characterization is originally applied for analysis of optical properties of engine lubricants caused by the introduction of contaminants, such as gasoline, coolant, and water.

1 – 10 of 93