Search results

1 – 10 of 96
To view the access options for this content please click here
Article
Publication date: 1 February 2013

Hamid R. Aghayan, Evgueni V. Bordatchev and Jun Yang

The purpose of this paper is to develop new knowledge in experimental characterization of contaminants in engine lubricants, using surface plasmon resonance (SPR) sensing…

Abstract

Purpose

The purpose of this paper is to develop new knowledge in experimental characterization of contaminants in engine lubricants, using surface plasmon resonance (SPR) sensing that can be applicable for on‐line condition monitoring of lubricant quality and engine component performance.

Design/methodology/approach

The effect of change in optical properties (e.g. transparency, absorption, and refractive index) of engine lubricants caused by the introduction of contaminants, such as gasoline, coolant, and water, on the surface plasmon resonance characteristics is analyzed experimentally. In SPR measurement, variations in both the refractive index and absorption cause changes in the SPR curve, which is the dependence of reflectivity vs incidence angle. The SPR characteristics (e.g. refractivity) of engine lubricant contaminated by gasoline, water and coolant at different concentration are measured as a function of resonance angle and analyzed with respect to different concentration (1%‐10%) of contaminants. Also, pattern recognition analysis between fresh and used engine lubricants is performed, to show applicability of Bayesian classification methodology for on‐line monitoring and predicting engine lubricant condition.

Findings

It was shown experimentally that attenuation of surface plasmons due to introduction of contaminants to the engine lubricant leads to a noticeable change in resonance angle and reflectivity minimum of the SPR curve due to an increase in the dielectric permittivity. In addition, the changes in the SPR characteristics were observed between fresh and used engine lubricant, causing resonance angle and reflectivity minimum of the SPR curve to shift.

Practical implications

The knowledge generated in this study lays the informational basis to further develop an on‐line system for engine lubricant condition monitoring using miniaturized SPR sensors fully suitable for on board applications.

Originality/value

SPR characterization is originally applied for analysis of optical properties of engine lubricants caused by the introduction of contaminants, such as gasoline, coolant, and water.

To view the access options for this content please click here
Article
Publication date: 17 August 2018

Vakhtang Jandieri, Lana Okropiridze, Kiyotoshi Yasumoto, Daniel Erni and Jaromir Pistora

The purpose of this paper is to develop a rigorous self-contained formulation for analyzing electromagnetic scattering by grating of plasmonic nanorods. The authors…

Downloads
74

Abstract

Purpose

The purpose of this paper is to develop a rigorous self-contained formulation for analyzing electromagnetic scattering by grating of plasmonic nanorods. The authors investigate this structure from the viewpoint of the practical application as a refractive index plasmonic sensor. The presented rigorous formulation is accompanied with a neat implementation providing a high computation efficiency and could be considered as an important tool for designing and optimizing compact sensors.

Design/methodology/approach

Scattering of an incident plane wave by grating made of a periodic arrangement of metal-coated dielectric nanocylinders on a dielectric slab is rigorously investigated using the recursive algorithm combined with the lattice sums technique. As a dielectric slab, the authors consider glass material, which is widely used in experiments, whereas silver (Ag) is used as a low loss metal suitable to excite plasmon resonances. The main advantage of the developed self-contained formulation is that first the authors extract the reflection and transmission matrices of a single planar array from a separate analysis of the grating and the slab and then obtain the scattering characteristics of the whole structure by using a recursive formula. The method is computationally fast.

Findings

Dependence of the surface plasmon resonance wavelength on the refractive index of the surrounding medium is carefully investigated. The resonance peaks are red-shifted with respect to an increasing refractive index of surrounding medium showing an almost linear behavior. Near field distributions are analyzed at the resonance wavelengths of the spectral responses. Special attention is paid to the formation of the dual-absorption bands because of the excitation of the localized surface plasmons. The authors give physical insight to the coupling between grating and the glass slab. The authors found that a strong enhancement of the field inside the slab occurs when the scattered wave of the grating is phase-matched to the guided modes supported by the slab.

Originality/value

In the authors’ formulation, they do not use any approximation and it is rigorous and accurate. The authors use their original method. The method is based on the lattice sums technique and uses the recursive algorithm to calculate the generalized reflection and transmission characteristics by grating. Such fast and accurate method is an effective tool apt for designing and optimizing tailored sensors, for e.g. advanced biomedical applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 11 November 2013

Gianluca Ruffato and Filippo Romanato

– The purpose of this paper is to simulate and analyze the excitation and propagation of surface plasmon polaritons (SPPs) on sinusoidal metallic gratings in conical mounting.

Abstract

Purpose

The purpose of this paper is to simulate and analyze the excitation and propagation of surface plasmon polaritons (SPPs) on sinusoidal metallic gratings in conical mounting.

Design/methodology/approach

Chandezon's method has been implemented in MATLAB environment in order to compute the optical response of metallic gratings illuminated under azimuthal rotation. The code allows describing the full optical features both in far- and near-field terms, and the performed analyses highlight the fundamental role of incident polarization on SPP excitation in the conical configuration.

Findings

Results of far-field polarization conversion and plasmonic near-field computation clearly show that azimuthally rotated metallic gratings can support propagating surface plasmon with generic polarization.

Originality/value

The recent papers experimentally demonstrated the benefits in sensitivity and the polarization phenomenology that are originated by an azimuthal rotation of the grating. In this work, numerical simulations confirm these experimental results and complete the analysis with a study of the excited SPP near-field on the metal surface.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 9 September 2013

Yap Wing Fen and W. Mahmood Mat Yunus

The purpose of this paper is to review the novel application of surface plasmon resonance (SPR) in sensing heavy metal ions and the development of SPR to become an…

Abstract

Purpose

The purpose of this paper is to review the novel application of surface plasmon resonance (SPR) in sensing heavy metal ions and the development of SPR to become an alternative heavy metal ions sensor.

Design/methodology/approach

The possible dangerous toxic effects of heavy metal ions are revealed in the short introduction. The existing conventional methods for sensing heavy metal ions and their drawbacks are also discussed. To overcome these drawbacks, SPR has been investigated from the basic principle to the potential alternative in sensing heavy metal ions.

Findings

Application of SPR in sensing heavy metal ions emerged a decade ago. A wide range of active layers or recognition elements (e.g. polymer, protein, nanoparticles) have been developed to combine with SPR. The detection limit, sensitivity and selectivity of SPR sensing in heavy metal ions have been improved from time to time, until the present.

Originality/value

This paper provides up-to-date and systematic information on SPR sensing for heavy metal ions. Different advancements on active layers or recognition molecules have been discussed in detail and arranged in the order of their chronological evolution. The present review may provide researchers with valuable information regarding novel heavy metal ions sensor using SPR and encourage them to take this area for further research and development.

Details

Sensor Review, vol. 33 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 26 June 2019

Raj K. Vinnakota and Dentcho A. Genov

Selective laser melting (SLM) is an advanced rapid prototyping or additive manufacturing technology that uses high power density laser to fabricate metal/alloy components…

Abstract

Purpose

Selective laser melting (SLM) is an advanced rapid prototyping or additive manufacturing technology that uses high power density laser to fabricate metal/alloy components with minimal geometric constraints. The SLM process is multi-physics in nature and its study requires development of complex simulation tools. The purpose of this paper is to study – for the first time, to the best of the authors’ knowledge – the electromagnetic wave interactions and thermal processes in SLM based dense powder beds under the full-wave formalism and identify prospective metal powder bed particle distributions that can substantially improve the absorption rate, SLM volumetric deposition rate and thereby the overall build time.

Design/methodology/approach

We present a self-consistent thermo-optical model of the laser-matter interactions pertaining to SLM. The complex electromagnetic interactions and thermal effects in the dense metal powder beds are investigated by means of full-wave finite difference simulations. The model allows for accurate simulations of the excitation of gap, bulk and surface electromagnetic resonance modes, the energy transport across the particles, time dependent local permittivity variations under the incident laser intensity, and the thermal effects (joule heating) due to electromagnetic energy dissipation.

Findings

Localized gap and surface plasmon polariton resonance effects are identified as possible mechanisms toward improved absorption in small and medium size titanium powder beds. Furthermore, the observed near homogeneous temperature distributions across the metal powders indicates fast thermalization processes and allows for development of simple analytical models to describe the dynamics of the SLM process.

Originality/value

To the best of the authors’ knowledge, for the first time the electromagnetic interactions and thermal processes with dense powder beds pertaining to SLM processes are investigated under full-wave formalism. Explicit description is provided for important SLM process parameters such as critical laser power density, saturation temperature and time to melt. Specific guidelines are presented for improved energy efficiency and optimization of the SLM process deposition rates.

To view the access options for this content please click here
Article
Publication date: 1 December 2017

Nur Alia Sheh Omar and Yap Wing Fen

This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become…

Abstract

Purpose

This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become an alternative DENV sensor.

Design/methodology/approach

In this review, the existing standard laboratory techniques to diagnosis of DENV are discussed, together with their drawbacks. To overcome these drawbacks, SPR has been aimed to be a valuable optical biosensor for identification of antibodies to the DENV antigen. The review also includes the future studies on three-dimensional poly(amidoamine) (PAMAM) dendrimer-surface-assembled monolayer (SAM)-Au multilayer thin films, which are envisaged to have high potential sensitive and selective detection ability toward target E-proteins.

Findings

Application of SPR in diagnosis of DENV emerged over recent years. A wide range of immobilized biorecognition molecules have been developed to combine with SPR as an effective sensor. The detection limit, sensitivity and selectivity of SPR sensing in DENV have been enhanced from time to time, until the present.

Originality/value

The main purpose of this review is to provide authors with up-to-date and useful information on sensing DENV using SPR and to introduce a novel three-dimensional PAMAM-SAM-Au multilayer thin films for future research on SPR sensing applications.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 3 August 2021

Rui Wang, Chunlan Liu, Yong Wei and Yudong Su

This paper aims to study the sensitivity enhancement effect of the gold nanorod on fiber surface plasmon resonance (SPR) sensor. It proposes modeling the sensing effects…

Downloads
37

Abstract

Purpose

This paper aims to study the sensitivity enhancement effect of the gold nanorod on fiber surface plasmon resonance (SPR) sensor. It proposes modeling the sensing effects of fiber SPR sensor decorated with metal nanoparticles. By using simulation and experiment, the sensitivity enhancement effect of the gold nanorod was studied and demonstrated.

Design/methodology/approach

The paper opted for an exploratory study using simulation approach of finite-difference time-domain. Specifically, the effect of ratios and aspect ratios of gold nanorod on sensing performance are investigated theoretically. Based on the mathematical models, the validation experiments by using the gold nanorod with the aspect ratios of 5.1 were done to verify the sensitivity enhancement effect of the gold nanorod.

Findings

In conclusion, it is evident that with the increases of the aspect ratios, the sensing sensitivity of the refractive index increases first, then gradually stabilizes or decreases. After parameter optimization, the ratios and aspect ratios of gold nanorod are chosen to be 8 nm and 12.5, respectively, which makes the optimal refractive index sensitivity of 4465.53 nm/RIU be realized. In addition, the validation experiments by using the gold nanorod with the aspect ratios of 5.1 verify the sensitivity enhancement effect of the gold nanorods.

Originality/value

This paper proposes and demonstrates a new method for the sensitivity enhancement of fiber SPR sensor. After parameter optimization, the maximum sensitivity of 4465.53 nm/RIU was achieved by using 8 nm gold nanorods with the aspect ratios of 12.5. To verify the sensitivity enhancement of the gold nanorods, the authors also did the validation experiments. The testing results indicated that after the decoration of the gold nanorods, the sensitivity of the sensing probe increases from 2190.57 nm/RIU to 2693.24 nm/RIU, which demonstrates the sensitivity enhancement effect of the gold nanorods.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 30 November 2018

Chunlan Liu, Yong Wei, Yudong Su, Hao Liu, Yonghui Zhang and Xiangfei Nie

This paper aims to propose and demonstrate a novel surface plasmon resonance (SPR)-sensing approach by using the fundamental mode beam based on a graded index multimode…

Abstract

Purpose

This paper aims to propose and demonstrate a novel surface plasmon resonance (SPR)-sensing approach by using the fundamental mode beam based on a graded index multimode fiber (GIF). The proposed SPR sensor has high sensitivity and controllable working dynamic range, which expects to solve the two bottlenecks of fiber SPR sensor, including low sensitivity and the difficulty in multichannel detection.

Design/methodology/approach

The low-order mode of the GIF to SPR sense, which keeps the sensitivity advantage of the single-mode fiber SPR sensor, is used. By using this new SPR sensor, the effect of light incident angle and gold film thickness on working dynamic range was studied. According to the study results, the smaller is the incident angle, the larger is the SPR working dynamic range and the longer is the resonance wavelength with a fixed gold film thickness; the larger is the gold film thickness, the longer is the resonance wavelength with a fixed grinding angle. After the parameter optimization, the sensitivity of these two parameter-adjusting methods reach 4,442 and 3031 nm/RIU.

Originality/value

When the grinding angle of the GIF increases, the dynamic range of the resonance wavelength increases and has a redshift, sensitivity increases, and the resonance valley becomes more unobvious with a fixed gold film thickness. Similarly, when gold film thickness increases, the dynamic range of the resonance wavelength increases and has a redshift, sensitivity increases, and the resonance valley becomes more unobvious with a fixed grinding angle. These adjusting performance aforementioned lay the foundation for solving of the fiber-based SPR multichannel detection and increasing of the fiber-based SPR sensor sensitivity, which has a good application value.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 9 September 2013

Renato Iovine, Luigi La Spada and Lucio Vegni

– In this contribution, the aim is to present a nanoparticle device, operating in the visible regime based on the localized surface plasmon resonance (LSPR) phenomenon.

Abstract

Purpose

In this contribution, the aim is to present a nanoparticle device, operating in the visible regime based on the localized surface plasmon resonance (LSPR) phenomenon.

Design/methodology/approach

The nanoparticle electromagnetic properties are evaluated by a new analytical model and compared to the results obtained by numerical analysis.

Findings

A near-field enhancement is obtained by arranging the nanoparticles in a linear array. Analytical formulas, describing such enhancement, are presented.

Originality/value

The results demonstrate the possibility to use the proposed device for medical diagnostics and optoelectronics applications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 5 January 2015

N.F. Lokman, F. Suja', H. Abdullah and A.A. Abu Bakar

This purpose of this study is to investigate the structural and morphology of hybrid silver-crosslinked chitosan thin films potentially for surface plasmon resonance (SPR…

Abstract

Purpose

This purpose of this study is to investigate the structural and morphology of hybrid silver-crosslinked chitosan thin films potentially for surface plasmon resonance (SPR) sensor application. Silver, silver-chitosan and silver-crosslinked chitosan (annealed) thin films also were prepared as controls for this study.

Design/methodology/approach

Silver was firstly coated on top of the glass substrate by magnetron sputtering method. Different chitosan solutions (with and without glutaraldehyde) were coated on top of the substrate by spin coating method. Annealing treatment was carried out for one of silver-crosslink chitosan sample. The structural and morphology of all the thin films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The SPR curves also were measured by the SPR sensor with air and deionised (DI) water as analytes.

Findings

The structure of silver-crosslinked chitosan thin film presented a monoclinic structure with high crystallinity of 131.71 nm at the prominent peak by XRD analysis. The FESEM and AFM analyses revealed the morphology to be rough in surface attributed to enhanced contact with analytes in SPR measurement compared to other thin films.

Research limitations/implications

In the present study, the glutaraldehyde used to crosslink the thin film increased hydrophobicity and allows for more binding capacity.

Originality/value

The proposed silver-crosslinked chitosan thin film may prove beneficial for biosensing such as in environmental applications by SPR sensor.

Details

Pigment & Resin Technology, vol. 44 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 96