Search results

1 – 10 of over 13000
Article
Publication date: 19 September 2022

Jiezhen Hu, Junhao Deng, Peichang Deng and Gui Wang

This paper aims to study the use of electrochemical noise (EN) technology in the corrosion continuous monitoring of stainless steel (SS) in an atmospheric environment.

Abstract

Purpose

This paper aims to study the use of electrochemical noise (EN) technology in the corrosion continuous monitoring of stainless steel (SS) in an atmospheric environment.

Design/methodology/approach

An EN electrode was designed and fabricated to acquire the EN of 304 SS in the atmospheric environment. The statistical analysis and shot noise analysis were used to analyze the EN, and the surface morphology analysis of 304 SS was used to verify the EN analysis results.

Findings

The activation state, passive film formation and pitting corrosion of 304 SS can be clearly distinguished by the amplitude and frequency change of EN. The metastable pitting corrosion and steady-state pitting corrosion can be identified with the shot noise parameters q and fn. Under the existence of chloride ion, the stability of 304 SS passive film decreases and the steady-state corrosion pits of 304 SS are more likely to form with the reduction of thin electronic layer (TEL) pH. The critical TEL pH of 304 SS corrosion is a pH between 3 and 4.

Originality/value

In an atmospheric environment, the EN technology was used in the corrosion continuous monitoring of SS.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 February 2023

Yesen Zhu, Taoyong Hu, Yujie Li, Junhua Hao, Bin Han and Quan Yuan

The aim of this paper is to construct a device that simulated the seawater splash zone, dynamic waterline zone (splash zone) and full immersion zone. Localized corrosion of 2A12…

Abstract

Purpose

The aim of this paper is to construct a device that simulated the seawater splash zone, dynamic waterline zone (splash zone) and full immersion zone. Localized corrosion of 2A12 aluminum alloy long-scale specimen was studied.

Design/methodology/approach

Corrosion morphologies before and after the corrosion product removal were used to identify corrosion intensity at full seawater immersion zone, dynamic waterline zone (splash zone) and atmospheric zone. The average depth and diameter of corrosion pits in the three zones were evaluated by three-dimensional optical microscopy. The impact of wetting time of the atmospheric zone on the localized corrosion was investigated.

Findings

Corrosion pits were observed on the surface on day 4 for the wetted atmospheric zone (Case 1), and on the surface on day 8 for the alternant wet/dry atmospheric zone (Case 2). The corrosion product layer on the surface for Case 1 was partially broken down while the layer on the surface for Case 2 was intact. Average pitting depth and pitting diameters for Case 1 were more serious than that for Case 2.

Originality/value

The above findings revealed that the humidity of the atmospheric zone had great impact on the localized corrosion of aluminum alloy at the seawater splash zone.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Dejing Zhou, Yanming Xia, Zhiming Gao and Wenbin Hu

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Abstract

Purpose

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Design/methodology/approach

Polarization curve tests, immersion experiments and transmission electron microscopy analysis were used to study the corrosion behavior and tensile properties of the sheets before and after brazing and aging.

Findings

The strength of the sheet is weakened after brazing due to brittle eutectic phases, and recovered after aging due to enhanced precipitation strengthening in the AA7072 interlayer. The core of nonbrazed sheets cannot be protected due to the significant galvanic coupling effect between the intermetallic particles and the substrate. Brazing and aging treatments promote the redissolved of second phased and limit corrosion along the eutectic region in the clad, allowing the core to be protected.

Originality/value

AA7xxx alloy was added to conventional brazed sheets to form a novel Al alloy composite sheet with AA4xxx/AA7xxx/AA3xxx structure. The strengthening and corrosion mechanism of the sheet was proposed. The added interlayer can sacrificially protect the core from corrosion and improves strength after aging treatment.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 March 2016

Zhiming Ma, Tiejun Zhao, Jianzhuang Xiao and Ting Guan

Rebar corrosion in reinforced concrete is the major reason for the durability degradation, especially under harsh environment. This paper presents an experiment conducted to…

Abstract

Purpose

Rebar corrosion in reinforced concrete is the major reason for the durability degradation, especially under harsh environment. This paper presents an experiment conducted to investigate the influence of freeze-thaw cycles on the rebar corrosion in reinforced concrete. The purpose of this paper is to provide fundamental information about rebar corrosion under frost environment and improvement measures.

Design/methodology/approach

The related elastic modulus and compressive strength of different concrete specimens were measured after different freeze-thaw cycles. The accelerated rebar corrosion test was carried out after different freeze-thaw cycles; additionally, the value of calomel half-cell potential was determined. The actual rebar corrosion appearance was checked to prove the accuracy of the results of calomel half-cell potential.

Findings

The results show that frost damage aggravates the rebar corrosion rate and degree under freeze-thaw environment; furthermore, the results become more obvious with the freeze-thaw cycles increasing. Mixing the air-entrained agent into fresh concrete to prepare air-entrained concrete, increasing the cover thickness and processing the surface of concrete with a waterproofing agent can significantly improve the resistance to rebar corrosion. From the actual appearance of rebar corrosion, the results of calomel half-cell potential can well reflect the actual rebar corrosion in reinforced concrete.

Originality/value

The durability of reinforced concrete is mainly determined on chloride penetration that brings about rebar corrosion in chloride environments. Furthermore, the degradation of concrete durability becomes more serious in the harsh environment. As the concrete exposure to the freeze-thaw cycles environment, the freeze-thaw cycles accelerate the concrete damage, and the penetration of chloride into the concrete becomes easier because of the growing pore and crack sizes. In addition, rebar corrosion caused by chloride is one of the major forms of environmental attack on reinforced concrete. The tests conducted in this paper will describe the rebar corrosion in reinforced concrete under freeze-thaw environment.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Hyung Goun Joo, Kang Yong Lee, Guo Ming Luo and Da Quan Zhang

The purpose of this paper is to investigate the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Abstract

Purpose

The purpose of this paper is to investigate the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Design/methodology/approach

Al2O3 particles and 10 wt% NaCl solution are used to evaluate erosion and corrosion resistance of WC-Ni vacuum brazed coating. Combined test of erosion and corrosion is also conducted. The microstructure of each specimen is characterized by the scanning electron microscopy. The chemical composition was determined by energy-dispersive X-ray spectroscopy.

Findings

WC-Ni vacuum brazed coating layer is effective protective coating under combined erosion and corrosion environment. The weight loss of coating layer is more reduced as the cumulative test time.

Originality/value

WC-Ni vacuum brazed coatings are investigated to check characteristic of the combined erosion and corrosion environment. WC-Ni vacuum brazed coatings are kind of diffusion coating that attract attention because of the resistance of superb impact and corrosion in comparison with other coatings. Some previous researches reported the properties of vacuum brazed WC material. Erosion and corrosion behaviors of WC-Ni vacuum brazed coatings were studied in our previous research, respectively. Hence, in this research, the principal objective is to examine the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 June 2016

Lihua Gong, Qing Xing and Huihuang Wang

The purpose of this paper is to investigate the effect of welding procedure on the corrosion behaviors of weathering steel 09CuPCrNi in marine atmospheric environment. The…

Abstract

Purpose

The purpose of this paper is to investigate the effect of welding procedure on the corrosion behaviors of weathering steel 09CuPCrNi in marine atmospheric environment. The corrosion processes of weathering steel 09CuPCrNi and its welded joints in marine atmospheric environment were simulated by a salt spray dry-wet test.

Design/methodology/approach

The corrosion behaviors of the base metal and the welded joints at corrosion times of 2, 4, 8, 12, 24 weeks were investigated by weight loss test, electrochemical techniques, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). The corrosion rates, as well as the morphologies and electrochemical characteristics of corrosion products, the distribution of major alloying elements in rust layer were obtained. The influence of welding on the atmospheric corrosion of 09CuPCrNi was studied.

Findings

The results indicate that the corrosion rate of the 09CuPCrNi welded joints decreases gradually with the corrosion time, and the major alloying elements are enriched in the inner rust layer, which are similar to that of the base metal. In the early stage during the corrosion process, the welded joints with inhomogeneous structure show the poorer corrosion resistance than that of the base metal. However, it looks the opposite way around in the late corrosion stage, when the uniform corrosion products with even thickness of the base metal tend to detach from the substrate easier and earlier and resulting in cracks, which increase the corrosion rate comparatively with that of the welded joints.

Originality/value

09CuPCrNi low alloy steel is a kind of typical weathering steel developed in China which is similar to Corten A developed by USA. Nowadays, 09CuPCrNi low alloy steel is widely adopted in many fields which require welding processes. In the past years, the research of weathering steel welded joints was mainly concentrated on the strength, toughness and weldability. Less work has been done to investigate the difference of corrosion evolution and characteristics between the base metal and its welded joints. Thus, the main objective of the present work was to analyze the influence of welding on the atmospheric corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 October 2004

K.A. Davis, T.M. Linjewile, J. Valentine, D. Swensen, D. Shino, J.J. Letcavits, R. Sheidler, W.M. Cox, R.N. Carr and N.S. Harding

Combustion modifications to minimize NOX emissions have magnified the importance of waterwall corrosion in coal‐fired boilers. The physics and chemistry controlling corrosion

Abstract

Combustion modifications to minimize NOX emissions have magnified the importance of waterwall corrosion in coal‐fired boilers. The physics and chemistry controlling corrosion processes can be highly non‐linear and are challenging to describe in terms of their likely overall combustion behavior. This paper describes the application of a multi‐point, real time corrosion surveillance system to a large boiler firing high sulfur coal. This technology, incorporating electrochemical sensing and wireless signal transmission, enables combustion engineers and plant operating personnel to make informed decisions regarding the quantitative relationships between operating conditions, NOX emissions, and any resultant extent/magnitude of waterwall corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2004

I. Gurappa

This paper describes the effect of alloying elements such as Nb and Ga on the corrosion behaviour of Nd‐Fe‐B permanent magnetic alloy. The results revealed that the alloying…

Abstract

This paper describes the effect of alloying elements such as Nb and Ga on the corrosion behaviour of Nd‐Fe‐B permanent magnetic alloy. The results revealed that the alloying elements are not helpful in improving the corrosion resistance of the base magnet; rather their presence makes the base alloy highly vulnerable to corrosion in acidic environments. In particular, Nb addition is more detrimental to corrosion as was evidenced by potentiodynamic, cyclic polarisation, Ecorr vs time, electrochemical impedance and SEM results. The studies also showed that the degradation of the alloys with and without alloying addition takes place due to preferential dissolution of grain boundaries.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 13000