Search results

1 – 10 of over 30000
Article
Publication date: 8 April 2024

Hu Luo, Haobin Ruan and Dawei Tu

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images…

Abstract

Purpose

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images problems such as detail loss, low contrast and color distortion, and verify the feasibility of the proposed methods through experiments.

Design/methodology/approach

The improved RGHS algorithm to enhance the original underwater target image is proposed, and then the YOLOv4 deep learning network for underwater small sample targets detection is improved based on the combination of traditional data expansion method and Mosaic algorithm, expanding the feature extraction capability with SPP (Spatial Pyramid Pooling) module after each feature extraction layer to extract richer feature information.

Findings

The experimental results, using the official dataset, reveal a 3.5% increase in average detection accuracy for three types of underwater biological targets compared to the traditional YOLOv4 algorithm. In underwater robot application testing, the proposed method achieves an impressive 94.73% average detection accuracy for the three types of underwater biological targets.

Originality/value

Underwater target detection is an important task for underwater robot application. However, most underwater targets have the characteristics of small samples, and the detection of small sample targets is a comprehensive problem because it is affected by the quality of underwater images. This paper provides a whole set of methods to solve the problems, which is of great significance to the application of underwater robot.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 September 2013

Hanshan Li and Zhiyong Lei

The purpose of this paper is to improve photoelectric detection target (PDT) optical detection performance and detection view, by analyzing its influence factors and putting…

Abstract

Purpose

The purpose of this paper is to improve photoelectric detection target (PDT) optical detection performance and detection view, by analyzing its influence factors and putting forward a new method to design its optical detection system.

Design/methodology/approach

Using rectangle linked photoelectric detector, with low noise and high response, to design optical detection system and gain faint projectile image information; bringing forward a deviating focusing technique to eliminate detection blind area of photoelectric detector; and designing adjustable slit diaphragm to weaken background light influence.

Findings

The results of experimentation in shooting range show that the new PDT has improved detection sensitivity and performance.

Originality/value

The paper presents a new design method in photoelectric detection target (PDT) optical detection system, which can provide a new method to design fire across measurement system and gain accurate projectile's coordinates data in the shooting range.

Article
Publication date: 16 January 2017

Hanshan Li

The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform.

Abstract

Purpose

The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform.

Design/methodology/approach

This paper puts forward making use of the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target in infrared photoelectric detection system; researches the target optical characteristics based on the target imaging detection theory; sets up the heat balance equation of target’s surface node and gives the calculation method of total radiation intensity of flying target; and deduces the target detection distance calculation function; studies the changed regulation of radiation energy that charge coupled device (CCD) gain comes from target surface infrared heat radiations under different sky background luminance and different target flight attitude.

Findings

Through calculation and experiment analysis, the results show that when the target’s surface area increases or the target flight velocity is higher, the radiation energy that CCD obtained is higher, which is advantageous to the target stable detection in infrared photoelectric detection system.

Originality/value

This paper uses the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target and give the calculation and experiment results; those results can provide some data and improve the design method of infrared photoelectric detection system, and it is of value.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 February 2024

Han Wang, Quan Zhang, Zhenquan Fan, Gongcheng Wang, Pengchao Ding and Weidong Wang

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types…

Abstract

Purpose

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types of obstacles: positive obstacles, negative obstacles and trench obstacles.

Design/methodology/approach

The system framework includes mapping, ground segmentation, obstacle clustering and obstacle recognition. The positive obstacle detection is realized by calculating its minimum rectangle bounding boxes, which includes convex hull calculation, minimum area rectangle calculation and bounding box generation. The detection of negative obstacles and trench obstacles is implemented on the basis of information absence in the map, including obstacles discovery method and type confirmation method.

Findings

The obstacle detection system has been thoroughly tested in various environments. In the outdoor experiment, with an average speed of 22.2 ms, the system successfully detected obstacles with a 95% success rate, indicating the effectiveness of the detection algorithm. Moreover, the system’s error range for obstacle detection falls between 4% and 6.6%, meeting the necessary requirements for obstacle negotiation in the next stage.

Originality/value

This paper studies how to solve the obstacle detection problem when the robot obstacle negotiation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 January 2024

Faris Elghaish, Sandra Matarneh, Essam Abdellatef, Farzad Rahimian, M. Reza Hosseini and Ahmed Farouk Kineber

Cracks are prevalent signs of pavement distress found on highways globally. The use of artificial intelligence (AI) and deep learning (DL) for crack detection is increasingly…

Abstract

Purpose

Cracks are prevalent signs of pavement distress found on highways globally. The use of artificial intelligence (AI) and deep learning (DL) for crack detection is increasingly considered as an optimal solution. Consequently, this paper introduces a novel, fully connected, optimised convolutional neural network (CNN) model using feature selection algorithms for the purpose of detecting cracks in highway pavements.

Design/methodology/approach

To enhance the accuracy of the CNN model for crack detection, the authors employed a fully connected deep learning layers CNN model along with several optimisation techniques. Specifically, three optimisation algorithms, namely adaptive moment estimation (ADAM), stochastic gradient descent with momentum (SGDM), and RMSProp, were utilised to fine-tune the CNN model and enhance its overall performance. Subsequently, the authors implemented eight feature selection algorithms to further improve the accuracy of the optimised CNN model. These feature selection techniques were thoughtfully selected and systematically applied to identify the most relevant features contributing to crack detection in the given dataset. Finally, the authors subjected the proposed model to testing against seven pre-trained models.

Findings

The study's results show that the accuracy of the three optimisers (ADAM, SGDM, and RMSProp) with the five deep learning layers model is 97.4%, 98.2%, and 96.09%, respectively. Following this, eight feature selection algorithms were applied to the five deep learning layers to enhance accuracy, with particle swarm optimisation (PSO) achieving the highest F-score at 98.72. The model was then compared with other pre-trained models and exhibited the highest performance.

Practical implications

With an achieved precision of 98.19% and F-score of 98.72% using PSO, the developed model is highly accurate and effective in detecting and evaluating the condition of cracks in pavements. As a result, the model has the potential to significantly reduce the effort required for crack detection and evaluation.

Originality/value

The proposed method for enhancing CNN model accuracy in crack detection stands out for its unique combination of optimisation algorithms (ADAM, SGDM, and RMSProp) with systematic application of multiple feature selection techniques to identify relevant crack detection features and comparing results with existing pre-trained models.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 28 December 2023

Ankang Ji, Xiaolong Xue, Limao Zhang, Xiaowei Luo and Qingpeng Man

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack…

Abstract

Purpose

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack contributes to establishing an appropriate road maintenance and repair strategy from the promptly informed managers but still remaining a significant challenge. This research seeks to propose practical solutions for targeting the automatic crack detection from images with efficient productivity and cost-effectiveness, thereby improving the pavement performance.

Design/methodology/approach

This research applies a novel deep learning method named TransUnet for crack detection, which is structured based on Transformer, combined with convolutional neural networks as encoder by leveraging a global self-attention mechanism to better extract features for enhancing automatic identification. Afterward, the detected cracks are used to quantify morphological features from five indicators, such as length, mean width, maximum width, area and ratio. Those analyses can provide valuable information for engineers to assess the pavement condition with efficient productivity.

Findings

In the training process, the TransUnet is fed by a crack dataset generated by the data augmentation with a resolution of 224 × 224 pixels. Subsequently, a test set containing 80 new images is used for crack detection task based on the best selected TransUnet with a learning rate of 0.01 and a batch size of 1, achieving an accuracy of 0.8927, a precision of 0.8813, a recall of 0.8904, an F1-measure and dice of 0.8813, and a Mean Intersection over Union of 0.8082, respectively. Comparisons with several state-of-the-art methods indicate that the developed approach in this research outperforms with greater efficiency and higher reliability.

Originality/value

The developed approach combines TransUnet with an integrated quantification algorithm for crack detection and quantification, performing excellently in terms of comparisons and evaluation metrics, which can provide solutions with potentially serving as the basis for an automated, cost-effective pavement condition assessment scheme.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 29 May 2023

Divya Nair and Neeta Mhavan

A zero-day vulnerability is a complimentary ticket to the attackers for gaining entry into the network. Thus, there is necessity to device appropriate threat detection systems and…

Abstract

A zero-day vulnerability is a complimentary ticket to the attackers for gaining entry into the network. Thus, there is necessity to device appropriate threat detection systems and establish an innovative and safe solution that prevents unauthorised intrusions for defending various components of cybersecurity. We present a survey of recent Intrusion Detection Systems (IDS) in detecting zero-day vulnerabilities based on the following dimensions: types of cyber-attacks, datasets used and kinds of network detection systems.

Purpose: The study focuses on presenting an exhaustive review on the effectiveness of the recent IDS with respect to zero-day vulnerabilities.

Methodology: Systematic exploration was done at the IEEE, Elsevier, Springer, RAID, ESCORICS, Google Scholar, and other relevant platforms of studies published in English between 2015 and 2021 using keywords and combinations of relevant terms.

Findings: It is possible to train IDS for zero-day attacks. The existing IDS have strengths that make them capable of effective detection against zero-day attacks. However, they display certain limitations that reduce their credibility. Novel strategies like deep learning, machine learning, fuzzing technique, runtime verification technique, and Hidden Markov Models can be used to design IDS to detect malicious traffic.

Implication: This paper explored and highlighted the advantages and limitations of existing IDS enabling the selection of best possible IDS to protect the system. Moreover, the comparison between signature-based and anomaly-based IDS exemplifies that one viable approach to accurately detect the zero-day vulnerabilities would be the integration of hybrid mechanism.

Details

Smart Analytics, Artificial Intelligence and Sustainable Performance Management in a Global Digitalised Economy
Type: Book
ISBN: 978-1-80382-555-7

Keywords

Book part
Publication date: 22 March 2022

David Hasen

Regulators can adjust penalties to compensate for incomplete monitoring of regulated parties that are subject to legal rules, but compensating penalty adjustments often are…

Abstract

Regulators can adjust penalties to compensate for incomplete monitoring of regulated parties that are subject to legal rules, but compensating penalty adjustments often are unavailable when regulated parties are subject to legal standards. Incomplete monitoring consequently invites greater noncompliance under standards than under rules. This chapter develops a model that quantifies some of the specific tradeoffs that regulators face in designing standards regimes under incomplete monitoring. The model also considers the extent to which suboptimal compliance due to incomplete monitoring is likely to result in deadweight loss in different settings.

Details

The Law and Economics of Privacy, Personal Data, Artificial Intelligence, and Incomplete Monitoring
Type: Book
ISBN: 978-1-80262-002-3

Keywords

Book part
Publication date: 15 May 2023

Satinder Singh, Sarabjeet Singh and Tanveer Kajla

Purpose: The study aims to explore the wider acceptance of blockchain technology and growing faith in this technology among all business domains to mitigate the chances of fraud…

Abstract

Purpose: The study aims to explore the wider acceptance of blockchain technology and growing faith in this technology among all business domains to mitigate the chances of fraud in various sectors.

Design/Methodology/Approach: The authors focus on studies conducted during 2015–2022 using keywords such as blockchain, fraud detection and financial domain for Systematic Literature Review (SLR). The SLR approach entails two databases, namely, Scopus and IEEE Xplore, to seek relevant articles covering the effectiveness of blockchain technology in controlling financial fraud.

Findings: The findings of the research explored different types of business domains using blockchains in detecting fraud. They examined their effectiveness in other sectors such as insurance, banks, online transactions, real estate, credit card usage, etc.

Practical Implications: The results of this research highlight (1) the real-life applications of blockchain technology to secure the gateway for online transactions; (2) people from diverse backgrounds with different business objectives can strongly rely on blockchains to prevent fraud.

Originality/Value: The SLR conducted in this study assists in the identification of future avenues with practical implications, making researchers aware of the work so far carried out for checking the effectiveness of blockchain; however, it does not ignore the possibility of zero to less effectiveness in some businesses which is yet to be explored.

Details

Contemporary Studies of Risks in Emerging Technology, Part B
Type: Book
ISBN: 978-1-80455-567-5

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 30000