Search results

1 – 10 of 100
Article
Publication date: 3 August 2020

Yijiang Chen, Pei Zhang, Yong Zhou and Fuan Yan

The purpose of this work is to reveal the mechanism of WO42 on surface passivation for Q235 carbon steel in tungstate solution.

Abstract

Purpose

The purpose of this work is to reveal the mechanism of WO42 on surface passivation for Q235 carbon steel in tungstate solution.

Design/methodology/approach

In Na2WO4 solutions with the different concentrations of WO42, the spontaneous passivation occurred on the surface of Q235 carbon steel when the concentration of WO42 was up to 0.13 mmol/L, which was attributed to the formations of the inner deposition film and the outer adsorption film on the Q235 surface under the action of WO42.

Findings

The inner deposition film presented a two-layer microstructure: the inside layer was composed of Fe2O3 mainly, and the outside layer comprised Fe(OH)2•nH2O, Fe(OH)3•nH2O, FeWO4 and Fe2(WO4)3.

Originality/value

Both FeWO4 and Fe2(WO4)3 repaired the defects in the outside layer of the inner deposition film; however, the outer adsorption film played a more important role in the surface passivation than the inner deposition film did.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 August 2020

Xiaochen Hu, Pei Zhang, Yong Zhou and Fuan Yan

The purpose of this paper is to reveal the mechanism of nitrite (NO2) for the surface passivation of carbon steels in acidic environments through investigating the influences of…

Abstract

Purpose

The purpose of this paper is to reveal the mechanism of nitrite (NO2) for the surface passivation of carbon steels in acidic environments through investigating the influences of 0.01 mol/L NaNO2 addition on the corrosion and passivation behaviors of Q235 carbon steel in acidic phosphate buffer (APB) solutions (pH 2 to 6).

Design/methodology/approach

The electrochemical techniques including open circle potential evolution, potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry were applied.

Findings

In APB solutions without NO2, the Q235 steel presented the electrochemical behaviors of activation (A), activation-passivation-transpassivation and self-passivation-transpassivation at pH 2 to 4, pH 5 and pH 6, respectively; the corrosion rate decreased with the up of pH value, and the surface passivation occurred in the pH 5 and pH 6 solutions only: the anodic passivation at pH 5 and the spontaneous passivation at pH 6.

Originality/value

In APB solutions without NO2, the corrosion rate decreased with the up of pH value, and the surface passivation occurred in the pH 5 and pH 6 solutions only: the anodic passivation at pH 5 and the spontaneous passivation at pH 6. With the addition of 0.01 mol/L NaNO2, into APB solutions, the variation of corrosion rate showed the same rule, but the surface passivation occurred over the whole acidic pH range, including the anodic passivation at pH 2 to 4 and the spontaneous passivation at pH 5 to 6.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 January 2015

Xianlong Cao, Hongda Deng and Wei Lan

The purpose of this study was to evaluate the grey relational analysis method as a way of determining quickly the important factors affecting the atmospheric corrosion of Q235

Abstract

Purpose

The purpose of this study was to evaluate the grey relational analysis method as a way of determining quickly the important factors affecting the atmospheric corrosion of Q235 carbon steel in one year.

Design/methodology/approach

Atmospheric corrosion exposure tests on Q235 steel were carried out at seven typical test sites in China. The test period lasted one year. The corrosion rate of the Q235 test panels was determined using the weight-loss method and environmental factors were monitored and recorded by standard methods. The importance of the various environmental factors was evaluated using the grey relational analysis method.

Findings

The results obtained by the grey relational analysis method showed that the ranking order of factors affecting the corrosion of Q235 carbon steel from “slightly” to “severely” was as follows: relative humidity > dew days > SO3 > pH value of rain > rain precipitation > temperature > rainy days > Cl− > H2S > NO2. Furthermore, the initial atmospheric corrosion of Q235 carbon steel was recognized as being the corrosion of the smooth surface by water medium, or acidic aqueous solution.

Originality/value

Materials corrosion can be defined as a grey system because corrosion has a clear outcome and complex but uncertain characteristics. The grey relational analysis method, a part of grey system theory, is an effective and quick data processing method that can be used to sort out the degree of correlation of environmental factors affecting atmospheric corrosion in terms of it being a grey system with a lot uncertain information.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 September 2021

Changxu Huang, Xuhong Su, Qingqing Song and Xudong Wang

The purpose of this paper is to study the influence of temperature on the acceleration and simulation of indoor corrosion tests and the corrosion behavior of Q235 carbon steel.

Abstract

Purpose

The purpose of this paper is to study the influence of temperature on the acceleration and simulation of indoor corrosion tests and the corrosion behavior of Q235 carbon steel.

Design/methodology/approach

The indoor corrosion test was carried out by continuous salt spray in a salt spray chamber. Weight loss analysis, X-ray diffraction, cannon 1500 D, scanning electron microscopy and electrochemical techniques are used to analyze the results.

Findings

It was found that thickness loss of Q235 carbon steel increases with higher temperature and it can reach 0.095 mm at 50°C. Compared with the Xisha exposure test, the acceleration rate can achieve 230 times. This phenomenon indicates that decreasing the experimental temperature is beneficial to the anti-corrosion of the Q235 carbon steel. It is fascinating to find that acceleration and simulation increase with temperature simultaneously, which shows that β-FeOOH promotes the corrosion rate and α-FeOOH provides high simulation. Meanwhile, electrochemical impedance spectroscopy indicates that the resistance of the rust layer improves with temperature.

Practical implications

Through the study, the authors found that with the increase of temperature, the acceleration and simulation of indoor corrosion test improved, corrosion products and kinetics are the same as those in outdoor exposure test, and which means that the laboratory can achieve the long-term corrosion degree of outdoor exposure in a short time, and the similarity with outdoor exposure is high. This helps to the study of marine atmospheric corrosion, and indoor accelerated corrosion tests can largely eliminate regional differences by adjusting some environmental factors, and lay a foundation for marine atmospheric corrosion.

Originality/value

The effects of temperature on the acceleration and simulation of indoor corrosion tests are discussed. Through laboratory experiments, the long-term service life of Q235 carbon in the Xisha marine atmosphere can be predicted effectively.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 April 2021

Zhuolin Li, Dongmei Fu and Zibo Pei

This paper aims to discover the mathematical model for Q235 carbon steel corrosion date acquired in the initial stage of atmospheric corrosion using electrical resistance probe.

Abstract

Purpose

This paper aims to discover the mathematical model for Q235 carbon steel corrosion date acquired in the initial stage of atmospheric corrosion using electrical resistance probe.

Design/methodology/approach

In this paper, mathematical approaches are used to construct a classification model for atmospheric environmental elements and material corrosion rates.

Findings

Results of the experiment show that the corrosion data can be converted into corrosion depth for calculating corrosion rate to obtain corrosion kinetics model and conform corrosion acceleration phase. Combined with corresponding atmospheric environmental elements, a real time grade subdivision model for corrosion rate can be constructed.

Originality/value

These mathematical models constructed by real time corrosion data can be well used to research the characteristics about initial atmospheric corrosion of Q235 carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Yanbao Guo, Hai Tan, Deguo Wang and Tao Meng

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current…

Abstract

Purpose

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC) corrosion of buried steel pipelines is becoming more serious. This paper aims to study the corrosion behaviours of Q235 buried steel pipelines induced by the alternating stray current, with a set of indoor simulated experiment apparatuses.

Design/methodology/approach

The corrosion of the coating holidays of the buried steel pipelines at various AC current densities from 0 to 200 A/m2 in the soil-simulating environment was revealed by the electrochemical and weight-loss methods.

Findings

The results showed that the corrosion potential of the steel shifted negatively obviously and the corrosion rate of the steel increased with the increasing of AC current density. At a low AC current density, the negative deviation of the corrosion potential of the steel was small and the increase of corrosion rate was slight. However, the negative deviation of the corrosion potential was remarkable and the corrosion rate was greatly increased at a relative higher AC current density. The geometrical shape of the corrosion images indicated the corrosion forms changed from uniform corrosion to local corrosion due to the increase of AC interference.

Originality/value

Investigation results are of benefit to provide a new strategy to forecast and evaluate the AC-induced corrosion of the buried pipelines which could improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 January 2020

Qingqing Song, Xudong Wang, Boyang Pan and Lei Wan

The purpose of this paper is to obtain the environmental factor, which has the greatest effect on the corrosion rate of Q235 carbon steel under thin electrolyte layer, and to…

Abstract

Purpose

The purpose of this paper is to obtain the environmental factor, which has the greatest effect on the corrosion rate of Q235 carbon steel under thin electrolyte layer, and to analyze the effect of this factor on the corrosion morphology, corrosion products and polarization process of Q235 carbon steel.

Design/methodology/approach

An electrochemical device, which can be used under thin electrolyte layer is designed to measure the corrosion current in different environments. Response surface methodology (RSM) is introduced to analyze the effect of environmental factors on corrosion rate. Scanning electron microscope (SEM) and X-ray diffraction (XRD) technique are used to analyze the results. The Tafel slopes of anode and cathode in different humidity and solution are calculated by least square method.

Findings

The three environmental factors are ranked according to importance, namely, humidity, temperature and chloride ion deposition rate. In a high humidity environment, the relative content of α-FeOOH in the corrosion product is high and the relative content of β-FeOOH is low. The higher the humidity, the lower the degree of anodic blockage, whereas the degree of cathodic blockage is independent of humidity. The above experiments confirm the effectiveness and efficiency of the device, indicating it can be used for the screening of corrosive environmental factors.

Originality/value

In this paper, an electrochemical device under thin film is designed, which can simulate atmospheric corrosion well. Subsequent SEM and XRD confirmed the reliability of the data measured by this device. The introduction of a scientific RSM can overcome the limitations of orthogonal experiments and more specifically and intuitively analyze the effects of environmental factors on corrosion rates.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 May 2015

Min Zhang, Hong-Hua Ge, Xue-Juan Wang, Xin-Jing Meng, Yu-Zeng Zhao and Qiang-Qiang Liao

– The purpose of this study was to explore the differences in the corrosion behavior of carbon steel in simulated reverse osmosis (RO) product water, and in seawater.

Abstract

Purpose

The purpose of this study was to explore the differences in the corrosion behavior of carbon steel in simulated reverse osmosis (RO) product water, and in seawater.

Design/methodology/approach

The wire beam electrodes (WBE) and coupons made from Type Q235 carbon steel and were immersed in simulated reverse osmosis product water, and in seawater, for fifteen days. The corrosion potential distribution on the WBE at different times was measured. The corrosion rates of the carbon steel in different solutions were obtained using weight loss determinations. The different corrosion behavior of carbon steel in the two kinds of solution was analyzed.

Findings

The results showed that the average corrosion potential, micro-cathode potential and micro-anode potential of the WBE decreased with time in simulated RO product water. During this period, the maximum potential difference between micro-cathodes and micro-anodes on the WBE surface also decreased with time. The potential difference was more than 260mV at the beginning of the test and was still greater than 110mV after fifteen days of immersion. The positions of cathodes and anodes remained basically unchanged and corrosion took place on the localized anode during the experiments. The average corrosion potential, micro-cathode potential and micro-anode potential on the WBE surface also decreased with time in the simulated seawater. However, the maximum potential difference between micro-cathode and micro-anode on the WBE surface in the simulated seawater was much smaller than was the case in simulated RO product water. It was 37.8 mV at the beginning of the test and was no more than 12mV after two days immersion. The positions of cathode region and anode kept changing, leading to overall uniform corrosion. The actual corrosion rate on the corroded anode region in simulated RO product water was greater than was the case in simulated seawater.

Originality/value

The corrosion behavior differences of carbon steel between in RO product water and in seawater were revealed by using wire beam electrodes (WBE). From the micro point of view, it explained the reason why the actual corrosion rate of carbon steel in RO product water was greater than that in sea water. The results can be helpful to explore future corrosion control methods for carbon steel in RO product water.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 April 2014

Yuan Lu, Ying Zhang, Zhenguo Liu, Yong Zhang, Chaoming Wang and Haijun Guo

In order to solve the corrosion problems in the South China Sea, the purpose of this paper was to study the main influences of corrosion including temperature, H2S content and…

Abstract

Purpose

In order to solve the corrosion problems in the South China Sea, the purpose of this paper was to study the main influences of corrosion including temperature, H2S content and corrosion inhibitor content in CO2/H2S oil field-produced water.

Design/methodology/approach

The corrosion products formed on the steel surface were observed and analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD).

Findings

The results indicate that temperature significantly influences the corrosion rate, which is a maximum at 70°C. The corrosion rate decreases as H2S content increases which is less than 10 mg/L, but then it increases rapidly. The FeCO3/Fe x S y protective film and a corrosion inhibition also were considered.

Research limitations/implications

A mixture containing an imidazoline derivate and an organic amine can enhance the corrosion resistance of the corrosion product film.

Practical implications

A mixture containing an imidazoline derivate and an organic amine can enhance the corrosion product film corrosion resistance.

Social implications

Imidazoline is one kind of environmentally safe agent which can be used in the ocean.

Originality/value

The corrosion can be controlled to a satisfactory extent in the presence of a mixture containing an imidazoline derivate and an organic amine.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 100