Search results

1 – 10 of over 2000
Article
Publication date: 26 July 2013

Muhammad Kashif and Uda Hashim

The purpose of the current research is to use impedance spectroscopy to study the AC parameters that varied with frequency such as impedance, dielectric constant and conductivity…

Abstract

Purpose

The purpose of the current research is to use impedance spectroscopy to study the AC parameters that varied with frequency such as impedance, dielectric constant and conductivity of ZnO nanorods MSM structure in the range of 1 Hz to 10 MHz under atmospheric conditions.

Design/methodology/approach

ZnO nanorods were grown on glass substrate using low cost sol‐gel method. 0.35 M seed solution was prepared by dissolving zinc acetate dihydrate in 2‐methoxyethanol and monoethanolamine which acts as a stabilizer was added drop‐wise. Prior to the deposition, glass slide was cut into pieces of 1.5 cm×2 cm. Ultra‐sonication process is used to clean the glass substrate using acetone, ethanol, and de‐ionized (DI) water for 5 min. The prepared seed solution was coated on glass substrate using spin coater at spinning speed of 3000 rpm for 30 s and then dried at 250°C for 10 min followed by annealing at 550°C for 2 h. The hydrothermal growth was carried out in aqueous solution of zinc nitrate hexahydrate (25 mM), hexamethyltetramine (25 mM).

Findings

ZnO nanorods were characterized using scanning electron microscope (SEM), X‐ray diffraction (XRD) and impedance spectroscopy. The real part of impedance (Z′) showed two semicircles that correspond to the distribution of the grain boundaries and electrode process. SEM image showed the densely packed ZnO nanorods on the surface of glass substrate, whereas XRD revealed the grown nanorods have c‐axis orientation. The results show that the impedance dielectric increases as the frequency decreases while the conductivity showed the opposite behavior.

Originality/value

This paper demonstrates the electron transport mechanism of ZnO nanorods at room temperature to understand the frequency dependent parameters.

Details

Microelectronics International, vol. 30 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 1988

J.C. Curtis, K.J. Lodge and D.J. Pedder

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the…

Abstract

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the substrate and tracking system. It reviews the properties required of substrates and the limitations derived from the materials used and the processes needed to put tracks on them. Those areas where these requirements are in conflict are highlighted, including such low technology problems as the limited size availability of substrate prepregs which may limit the tracking density achievable on the newer, more advanced low dielectric materials. Some limitations and trade‐offs are identified.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1202

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 25 July 2019

Juliana Padilha Leitzke and Hubert Zangl

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such…

932

Abstract

Purpose

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such as autarkic wireless sensors, which require a low computational complexity reconstruction approach and a low number of electrodes. This paper also investigates how the electrode design can affect the reconstruction results in tomography.

Design/methodology/approach

EITS is performed by using a non-iterative method called optimal first order approximation. In addition to that, a planar electrode geometry is used instead of the traditional circular electrode geometry. Such a structure allows the system to identify materials placed on the region above the sensor, which do not need to be confined in a pipe. For the optimization, the mean squared error (MSE) between the reference images and the obtained reconstructed images was calculated.

Findings

The authors demonstrate that even with a low number of four electrodes and a low complexity reconstruction algorithm, a reasonable reconstruction of water and ice fractions is possible. Furthermore, it is shown that an optimal distribution of the sensor electrodes can help to reduce the MSE without any costs in terms of computational complexity or power consumption.

Originality/value

This paper shows through simulations that the reconstruction of ice and water mixtures is possible and that the electrode design is a topic of great importance, as they can significantly affect the reconstruction results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 5 January 2022

Alex Mason, Dmytro Romanov, L. Eduardo Cordova-Lopez, Steven Ross and Olga Korostynska

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of…

2284

Abstract

Purpose

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a smart knife are also defined.

Design/methodology/approach

This paper reviews various technologies that can be used, either alone or in combination, for developing a future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the defined criteria for a smart knife.

Findings

Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily adaptable to produce a smart knife with proven functionality, robustness or reliability.

Originality/value

This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time “feeling feedback” to the robot is at the centre of the discussion.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 March 2011

M. Sarlak and S.M. Shahrtash

The purpose of this paper is to present a new pattern recognition‐based algorithm to detect high‐impedance faults (HIFs), including only with broken conductor and arcs, in…

Abstract

Purpose

The purpose of this paper is to present a new pattern recognition‐based algorithm to detect high‐impedance faults (HIFs), including only with broken conductor and arcs, in distribution networks.

Design/methodology/approach

In the proposed method, using discrete wavelet transform, the time‐frequency‐based features of the current waveform are calculated. Then, to extract the best feature set of the generated time‐frequency features, principle components analysis (PCA) is applied and finally support vector machines (SVM) is used as a classifier to distinguish between the HIFs, including only with broken conductor and arcs, and other similar phenomena such as capacitor banks switching, no load transformer switching, load switching, insulator leakage current and harmonic loads.

Findings

The experimental results have shown that using SVM with PCA as the feature extraction method and radial basis function (RBF) as the kernel function has acceptable security and dependability performances in distinguishing HIFs, including only with broken conductor and arcs, from other similar phenomena and is superior to the Bayes and multi‐layer perceptron neural network classifiers.

Originality/value

Using new combination of time‐frequency‐based features with SVM provides a new algorithm to detect HIFs, including only with broken conductor and arcs, that has acceptable security and dependability.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 February 2018

Knut E. Aasmundtveit, Trym Eggen, Tung Manh and Hoang-Vu Nguyen

This paper aims to demonstrate low-temperature bonding for piezoelectric materials at temperatures well below the relevant Curie temperatures so as to avoid depolarization of the…

Abstract

Purpose

This paper aims to demonstrate low-temperature bonding for piezoelectric materials at temperatures well below the relevant Curie temperatures so as to avoid depolarization of the piezoelectric material during bonding.

Design/methodology/approach

Au-coated test samples of lead zirconate titanate (PZT) are bonded to a WC-based resonant backing layer with In–Bi eutectic material in which the In–Bi metal system is a preform or thin, evaporated layers. The bonded samples are characterized using electrical impedance spectroscopy and cross-section microscopy. The first technique verifies the integrity of polarization and reveals the quality of the bondline in a non-destructive manner, particularly looking for voids and delaminations. The latter technique is destructive but gives more precise information and an overview of the structure.

Findings

Successful low-temperature (115°C) bonding with intact PZT polarization was demonstrated. The bondlines show a layered structure of Au/Au–In intermetallic compounds (with Bi inclusions)/Au, capable of withstanding temperatures as high as 271°C before remelting occurs. For bonded samples using In–Bi preform, repeatable bonds of high quality (very little voiding) were obtained, but the bonding time is long (1 h or more). For bonded samples using evaporated thin films of In–Bi, bonding can be performed in 30 min, but the process needs further optimization to be repeatable.

Originality/value

Low-temperature solid-liquid interdiffusion (SLID) bonding is a novel technique, merging the fields of low-temperature solder bonding with the SLID/transient liquid phase (TLP) approach, which is normally used for much higher temperatures.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 20 June 2016

Chiew Loon Goh, Ruzairi Abdul Rahim and Mohd Hafiz Fazalul Rahiman

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively…

496

Abstract

Purpose

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization.

Design/methodology/approach

A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail.

Findings

Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed.

Originality/value

The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 May 2010

S. Patil and Vijaya Puri

The purpose of this paper is to report the effect of bismuth oxide thick films of various thicknesses on the X band (8‐12 GHz) response of Ag thick film microstrip rectangular…

Abstract

Purpose

The purpose of this paper is to report the effect of bismuth oxide thick films of various thicknesses on the X band (8‐12 GHz) response of Ag thick film microstrip rectangular patch antenna.

Design/methodology/approach

The effect of bismuth oxide thick film overlay of different thickness on Ag thick film microstrip rectangular patch antenna was investigated in the X band (8‐12 GHz). The change in the resonance frequency, amplitude, band width, quality factor, and input impedance of the antenna were studied. Using the resonance frequency the permittivity and conductivity of bismuth oxide thick film was measured.

Findings

Thickness of Bi2O3 thick film overlay dependent changes in the patch antenna characteristics is obtained. The resonance frequency shifts to higher frequency end due to overlay. The input impedance decreases due to the overlay. The dielectric constant of bismuth oxide thick film calculated from shift in resonance frequency shows thickness dependent values.

Originality/value

The microwave permittivity and conductivity of Bi2O3 thick film have been reported for the first time using overlay on thick film patch antenna. Thickness of overlay dependent tuning of the antenna has been achieved.

Details

Microelectronics International, vol. 27 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 2000