Search results

11 – 20 of 419
Article
Publication date: 3 January 2023

Neha Vijay and Kushal Sharma

The investigation of fluid flow over a rotating disk has been increasing due to the spread of machine technology. Because of this development, we scrutinized the…

Abstract

Purpose

The investigation of fluid flow over a rotating disk has been increasing due to the spread of machine technology. Because of this development, we scrutinized the Magnetohydrodynamic (MHD) flow of hybrid nanofluid caused by a decelerating rotating disk with Ohmic heating, Soret and Dufour effects. The disk's angular velocity is taken to be an inversely time-dependent linear function. Moreover, the temperature-dependent viscosity of hybrid nanofluid is incorporated in the present investigation. Methanol is considered as base fluid, while copper oxide (CuO) and magnesium oxide (MgO) are nanoparticles.

Design/methodology/approach

Estimated fundamental partial differential equations of flow problems are altered as a dimensionless system of ordinary differential equations using appropriate similarity transformation and solved using a numerical technique: BVP Midrich scheme in Maple software. The impression of emerging non-dimensional parameters is portrayed graphically. All outcomes are shown in the velocity, temperature and concentration profiles.

Findings

The developed flow problem involves a non-dimensional parameter (A) that reveals the deceleration of the disk. For larger values of A, the disk decelerates faster and for some fixed time, the fluid surrounding the disk revolves more rapidly than the disk itself. The radial velocity of fluid diminishes and axial velocity becomes uniform when the disk is subjected to wall suction velocity (B).

Originality/value

This analysis is significant in biomedical engineering, cancer therapeutic, manufacturing industries and nano-drug suspension in pharmaceuticals. The novelty of the current study is the hybrid nanofluid flow with Ohmic heating, Soret and Dufour effects on a decelerating rotating disk. To the best of the author's knowledge, no such consideration has been published in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2019

Shaohua Lv and Jian Wang

The novel structures and properties of nanostructure and nanomaterials give people perfect artistic expression of feeling and sense, then the nanoart discipline is developed and…

Abstract

Purpose

The novel structures and properties of nanostructure and nanomaterials give people perfect artistic expression of feeling and sense, then the nanoart discipline is developed and is closely related on the nanotechniques. The many achieved novel nanostructures with strong anti-corrosion prepared by the anodization have been reviewed. The paper would raise public awareness of nanotechnology, nanomaterial and their impact on our lives.

Design/methodology/approach

Anodization is a very effective and simple technique to form various nanostructures of metal oxide. It includes hard anodization, mild anodization and pulse anodization. Many measures have been introduced anodization process to improve the quality of formed nanostructure and enhance its properties, such as anti-corrosion.

Findings

The formation mechanism of anodic aluminum oxide (AAO) by using the mild, hard and pulse anodization has been discussed. The pretexture process and many other measures have been taken in mild and hard anodization to improve the regularity of pore array and greatly accelerate the formation rate of AAO. The pulse anodization has been used to prepare the multilayer Y-branched AAO film, which exhibits steady rich and vivid structure colors and gives a very good artistic expression. Furthermore, many other metal oxide nanostructures such as TiO2 and CuO have also been fabricated using the anodization techniques.

Originality/value

Various nanostructures of metal oxide prepared by anodization have been reviewed and are itself a perfect artwork in mesoscale. Also, many nanostructures have exhibited steady, rich and vivid structure colors and give people a very good artistic expression.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 April 2015

Hao Liu, Yujuan Zhang, Shengmao Zhang, Yanfen Chen, Pingyu Zhang and Zhijun Zhang

The purpose of this paper is synthesis of oil-soluble non-spherical nanoparticles modified with free phosphorus and sulphur modifier and investigation of their tribological…

Abstract

Purpose

The purpose of this paper is synthesis of oil-soluble non-spherical nanoparticles modified with free phosphorus and sulphur modifier and investigation of their tribological properties as environment-friendly lubricating oil additives.

Design/methodology/approach

To study the effect of morphology of nanoparticles on their tribological properties, rice-like CuO nanoparticles were synthesized. To improve the solubility of CuO nanoparticles in organic media, the in-situ surface modification method was used to synthesize these products. The morphology, composition and structure of as-synthesized CuO nanoparticles were investigated by means of transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Fourier transform infrared spectrometry. The tribological properties of as-synthesized CuO nanoparticles as an additive in liquid paraffin (LP) were evaluated with a four-ball tribometer. The morphology and elemental composition of worn steel ball surfaces were analysed by X-ray photoelectron spectroscopy.

Findings

It has been found that as-synthesized CuO nanoparticles with rice-like morphology have an average size of 7 and 15 nm along the shorter axle and longer axle, respectively, and can be well-dispersed in LP. Tribological properties evaluation results show that as-synthesized CuO nanoparticles as additives in LP show good friction-reducing, anti-wear and load-carrying capacities, especially under a higher normal load.

Originality/value

Oil-soluble rice-like CuO nanoparticles without phosphorus and sulphur were synthesized and their tribological properties as lubricating oil additives were also investigated in this paper. These results could be very helpful for application of CuO nanoparticles as environment-friendly lubricating oil additives, owing to their free phosphorus and sulphur elements characteristics.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 December 2023

Iskandar Waini, Farah Nadzirah Jamrus, Natalia C. Roșca, Alin V. Roșca and Ioan Pop

This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid…

Abstract

Purpose

This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid nanofluids with radiation effect.

Design/methodology/approach

The partial differential equations that governed the problem will undergo a transformation into a set of similarity equations. Following this transformation, a numerical solution will be obtained using the boundary value problem solver, bvp4c, built in the MATLAB software. Later, analysis and discussion are conducted to specifically examine how various physical parameters affect both the flow characteristics and the thermal properties of the hybrid nanofluid.

Findings

Dual solutions are discovered to occur for the case of shrinking disk (λ < 0). Stronger suction triggers the critical values’ expansion and delays the boundary layer separation. Through stability analysis, it is determined that one of the solutions is stable, whereas the other solution exhibits instability, over time. Moreover, volume fraction upsurge enhances skin friction and heat transfer in hybrid nanofluid. The hybrid nanofluid’s heat transfer also heightened with the influence of radiation.

Originality/value

Flow over a shrinking disk has received limited research focus, in contrast to the extensively studied axisymmetric flow problem over a diverse set of geometries such as flat surfaces, curved surfaces and cylinder. Hence, this study highlights the axisymmetric flow due to a shrinking disk under radiation influence, using hybrid nanofluids containing CuO and Ag. Upon additional analysis, it is evidently shows that only one of the solutions exhibits stability, making it a physically dependable choice in practical applications. The authors are very confident that the findings of this study are novel, with several practical uses of hybrid nanofluids in modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2014

Rehena Nasrin, M.A. Alim and Ali J. Chamkha

This work is focused on the numerical modeling of mixed convective heat transfer in a double lid-driven cavity filled with water-CuO nanofluid in the presence of internal heat…

Abstract

Purpose

This work is focused on the numerical modeling of mixed convective heat transfer in a double lid-driven cavity filled with water-CuO nanofluid in the presence of internal heat generation. The paper aims to discuss these issues.

Design/methodology/approach

The flow field is modeled using a generalized form of the momentum and energy equations. Discretization of the governing equations is achieved using the penalty finite element scheme based on the Galerkin method of weighted residuals.

Findings

The effects of pertinent parameters such as the internal heat generation parameter (Q), the Richardson number (Ri) and the solid volume fraction () on the flow and heat transfer characteristics are presented and discussed. The obtained results depict that the Richardson number plays a significant role on the heat transfer characterization within the triangular wavy chamber. Also, the present results show that an increase in volume fraction has a significant effect on the flow patterns.

Research limitations/implications

Because of the chosen research approach numerically, the research results may lack generalisability. Therefore, researchers are encouraged to test the proposed propositions experimentally.

Practical implications

A nanofluid is a base fluid with suspended metallic nanoparticles. Because traditional fluids used for heat transfer applications such as water, mineral oils and ethylene glycol have a rather low thermal conductivity, nanofluids with relatively higher thermal conductivities have attracted enormous interest from researchers due to their potential in enhancement of heat transfer with little or no penalty in pressure drop.

Originality/value

This paper fulfils an identified need to study how brand-supportive behaviour can be enabled.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2022

Maryam Khashij, Mohammad Hossein Salmani, Arash Dalvand, Hossien Fallahzadeh, Fatemeh Haghirosadat and Mehdi Mokhtari

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by…

Abstract

Purpose

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by various nanocomposites has been explained from water/wastewaters. ZnO-based nanocomposites, as eco-friendly nanoparticles with unique physicochemical properties, have received increased attention to remove Pb2+ ions from water/wastewaters.

Design/methodology/approach

In this review, different ZnO-based nanocomposites were reviewed for their application in the removal of Pb2+ ions from the aqueous solution, typically for wastewater treatment using methodology, such as adsorption. This review focused on the ZnO-based nanocomposites for removing Pb2+ ions from water and wastewaters systems.

Findings

The ZnO-based nanocomposite was prepared by different methods, such as electrospinning, hydrothermal/alkali hydrothermal, direct precipitation and polymerization. Depending on the preparation method, various types of ZnO-based nanocomposites like ZnO-metal (Cu/ZnO, ZnO/ZnS, ZnO/Fe), ZnO-nonmetal (PVA/ZnO, Talc/ZnO) and ZnO-metal/nonmetal (ZnO/Na-Y zeolite) were obtained with different morphologies. The effects of operational parameters and adsorption mechanisms were discussed in the review.

Research limitations/implications

The findings may be greatly useful in the application of the ZnO-based nanocomposite in the fields of organic and inorganic pollutants adsorption.

Practical implications

The present study is novel, because it investigated the morphological and structural properties of the synthesized ZnO-based nanocomposite using different methods and studied the capability of green-synthesized ZnO-based nanocomposite to remove Pb2+ ions as water contaminants.

Social implications

The current review can be used for the development of environmental pollution control measures.

Originality/value

This paper reviews the rapidly developing field of nanocomposite technology.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 November 2021

Nur Adilah Liyana Aladdin and Norfifah Bachok

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the…

Abstract

Purpose

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the magnetic field, M.

Design/methodology/approach

A set of reduced ordinary differential equations from the governing equations of partial differential equations is obtained through similarities requirements. The resulting equations are solved using bvp4c in MATLAB2019a. The impact of various physical parameters such as curvature parameter, ϒ, chemical reaction rate, B, magnetic field, M and Schmidt numbers, Sc on shear stress, f0 local heat flux, -θ(0) and mass transfer, -(0) also for velocity, f(η), temperature, θ(η) and concentration, ∅(η) profiles have been plotted and briefly discussed. In this work, some vital characteristics such as local skin friction, Cf, local Nusselt number, Nux and local Sherwood number, Shx are chosen for physical and numerical analysis.

Findings

The findings expose that the duality of solutions appears in a shrinking region ( ε < 0). The value of skin friction, heat transfer rate and mass transfer rate reduction for existing of M, but in contrary result obtain for larger ϒ, B and Sc. Furthermore, the hybrid nanofluid demonstrates better heat transfer compared to nanofluid.

Practical implications

The hybrid nanofluid has widened its applications such as in electronic cooling, manufacturing, automotive, heat exchanger, solar energy, heat pipes and biomedical, as their efficiency in the heat transfer field is better compared to nanofluid.

Originality/value

The findings on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder with the effect of chemical reaction, B and magnetic field, M is new and the originality is preserved for the benefits of future researchers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 30 June 2022

Arun Bangotra and Sanjay Sharma

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper…

Abstract

Purpose

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper oxide (CuO) and cerium oxide (CeO2) nanoparticles.

Design/methodology/approach

The static performance parameters of bearings with surface waviness and the addition of nanoparticles in lubricants were calculated using the nondimensional form of Reynolds equation and finite element method. Static performance parameters are calculated at different waviness numbers in the circumferential, axial and both directions at various wave amplitudes with variable viscosities of lubricants with nanoparticles using the viscosity equation forming a relationship between the relative viscosity, temperature and weight fraction of nanoparticles in lubricant developed from the experimental results.

Findings

The computed results indicate that the impact of waviness on the bearing surface enhances the load capacity, reduces friction coefficient, and is more effective in the circumferential direction than in the axial direction or in both directions. The addition of CuO and CeO2 to the lubricant enhanced its viscosity which further improved the steady-state parameters of the wave bearing.

Research limitations/implications

This study is based on a numerical technique, which has significant limitations, and the simulated results must be tested experimentally.

Practical implications

The current findings will be beneficial for designers to improve the performance of hydrodynamic journal bearings.

Originality/value

The calculated results demonstrate that the combined effect of the surface waviness on bearings and the addition of nanoparticles to lubricants can greatly increase the performance of hydrodynamic journal bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

11 – 20 of 419