Search results

1 – 10 of over 1000
Article
Publication date: 9 February 2015

Gao Gengyuan, Yin Zhongwei, Jiang Dan and Zhang Xiuli

The purpose of this paper is to improve hydrodynamic load-carrying capacity of a water-lubricated journal bearing by a new bush structure. Water-lubricated bearing is becoming…

Abstract

Purpose

The purpose of this paper is to improve hydrodynamic load-carrying capacity of a water-lubricated journal bearing by a new bush structure. Water-lubricated bearing is becoming more and more popular since it is environmentally friendly and saves energy. However, contrary to oil and grease-lubricated bearings, water-lubricated bearing is limited in many situations due to its low hydrodynamic load-carrying capacity.

Design/methodology/approach

The present article proposes a new bearing bush, with a transition-arc structure, which is favorable for increasing hydrodynamic load-carrying capacity. Hydrodynamic load-carrying capacity was calculated by means of three-dimensional computational fluid dynamics (3-D CFD) analysis. Several variants of a journal bearing with a transition-arc structure of different dimensions are analyzed, while the radial clearance of the bearing, eccentricity ratio and the velocity of the journal remain unchanged.

Findings

The results show that obvious changes are found in hydrodynamic load-carrying capacity of a water-lubricated journal bearing. For different width over diameter (L/D) bearing ratios, the relationship between hydrodynamic load-carrying capacity and the magnitude of the transition-arc structure dimension is researched.

Originality/value

The research presented here leads to a design reference guideline that could be used by the designer engineer to design smart journal bearings for improving the hydrodynamic load-carrying capacity.

Details

Industrial Lubrication and Tribology, vol. 67 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Xiao-dong Yu, Lei Geng, Xiao-jun Zheng, Zi-xuan Wang and Xiao-gang Wu

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this…

Abstract

Purpose

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity.

Design/methodology/approach

A mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted.

Findings

By increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available.

Originality/value

The load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.

Article
Publication date: 8 April 2014

Mukesh E. Shimpi and Gunamani Deheri

The purpose of this paper is to study and analyse the behaviour of a magnetic fluid-based squeeze film between rotating transversely rough porous annular plates, taking the…

Abstract

Purpose

The purpose of this paper is to study and analyse the behaviour of a magnetic fluid-based squeeze film between rotating transversely rough porous annular plates, taking the elastic deformation into consideration.

Design/methodology/approach

The stochastic film thickness characterizing the roughness is considered to be asymmetric with non-zero mean and variance and skewness while a magnetic fluid is taken as the lubricant. The associated stochastically averaged Reynolds-type equation is solved with appropriate boundary conditions to obtain the pressure distribution, which in turn is used to derive the expression for the load-carrying capacity.

Findings

It is observed that the roughness of the bearing surfaces affects the performance adversely, although the bearing registers an improved performance owing to the magnetic fluid lubricant. Also, it is seen that the deformation causes reduced load-carrying capacity. The bearing can support a load even in the absence of flow, unlike the case of conventional lubricants.

Originality/value

The originality of the paper lies in the fact that the negative effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by suitably choosing the rotational inertia and aspect ratio. This effect becomes sharper when negative variance occurs.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2010

Paresh Indubhai Andharia and Gunamani Deheri

The paper aims to improve upon the performance of a squeeze film formed by a magnetic fluid between longitudinally rough conical plates.

Abstract

Purpose

The paper aims to improve upon the performance of a squeeze film formed by a magnetic fluid between longitudinally rough conical plates.

Design/methodology/approach

The objectives are achieved by mathematically modeling a magnetic fluid‐based squeeze film between longitudinally rough conical plates. The roughness of the bearing surface is modeled by a stochastic random variable with non‐zero mean, variance and skewness. The standard approach is to solve associated Reynold's equation which is stochastically averaged with respect to the random roughness parameter. The scope of this paper is the industrial applications with regard to enhanced performance of the bearing system.

Findings

The findings indicate that the performance of the bearing gets enhanced due to negatively skewed roughness. It is also noticed that the standard deviation increases the load carrying capacity which is unlike the case of transverse surface roughness. Further, this paper suggests that there exist considerable scopes for enhancing the performance of the longitudinally rough bearing system by choosing a suitable combination of the magnetization parameter and the semi‐vertical angle of the cone.

Practical implications

From the industry point of view, this investigation will be certainly useful for improving the performance of a magnetic fluid‐based squeeze film between longitudinally rough conical plates.

Originality/value

The paper presents the improved performance of a squeeze film formed by a magnetic fluid between longitudinally rough conical plates and thereby extending the life period of the bearing system.

Details

Industrial Lubrication and Tribology, vol. 62 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2005

N.B. Naduvinamani, P.S. Hiremath and Syeda Tasneem Fathima

This paper aims to advance the squeeze film characteristics of long partial journal bearings with couple stress fluid studied by Lin to include the effect of permeability on the…

Abstract

Purpose

This paper aims to advance the squeeze film characteristics of long partial journal bearings with couple stress fluid studied by Lin to include the effect of permeability on the squeeze film lubrication of long partial porous journal bearings with couple stress fluids.

Design/methodology/approach

A semi‐analytical and semi‐numerical solution for the squeeze film lubrication of long porous partial journal bearings lubricated with couple stress fluid is presented in the paper. The modified Reynolds equation governing the fluid film pressure is derived. The modified Reynolds equation is solved analytically and closed form expressions for the squeeze film pressure and load carrying capacity are presented. The first‐order non‐linear equation for the time‐height relation is solved numerically with the given initial condition. The effect of couple stresses and permeability on the squeeze film characteristics are discussed.

Findings

It is found that the effect of couple stresses is to increase the load carrying capacity and to lengthen the squeeze film time as compared to the corresponding Newtonian case. The effect of permeability is to reduce the load carrying capacity and to decrease the squeeze film time as compared to the corresponding solid case.

Originality/value

In the design of porous partial journal bearings, the reduction in the load carrying capacity and the response time can be compensated by the use of lubricants with proper microstructures by which the bearing life can be increased.

Details

Industrial Lubrication and Tribology, vol. 57 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 2009

Himanshu Patel, Gunamani M. Deheri and Rakesh M. Patel

The purpose of this paper is to study and analyze the effect of roughness and magnetic fluid lubricant on the performance of the squeeze film formed when the upper plate with a…

Abstract

Purpose

The purpose of this paper is to study and analyze the effect of roughness and magnetic fluid lubricant on the performance of the squeeze film formed when the upper plate with a porous facing approaches an impermeable and flat lower plate by considering the rotation of the plates.

Design/methodology/approach

The roughness of the bearing surface is modeled by a stochastic random variable with non‐zero mean, variance and skewness. The associated Reynolds' equation is stochastically averaged with respect to the random roughness parameter. Results for bearing performance characteristics such as load‐carrying capacity and response time for various values of mean, standard deviation and measure of symmetry are numerically computed. The results are presented graphically as well as in tabular form.

Findings

It is observed that the bearing suffers owing to the transverse surface roughness. However, negatively skewed roughness may enhance the performance of the bearing system for suitable values of variance. It is also seen that rotation decreases the load‐carrying capacity but it has marginal influence in the presence of the magnetic fluid. Further, the performance of the bearing system registers a steady improvement with the increasing values of the magnetization parameter. In addition, the response time follows the trends of the load‐carrying capacity.

Originality/value

The originality of the paper lies in the fact that the roughness must be accounted for while designing the bearing system, even though a suitable rotation ratio parameter is chosen in the presence of a strong magnetic fluid. Of course, the best performance of the bearing system is registered in the case of negatively skewed roughness.

Details

Industrial Lubrication and Tribology, vol. 61 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2021

Mohammad Arif, Saurabh Kango and Dinesh Kumar Shukla

This study aims to purpose the suitable location of slip boundary condition and microscale surface textures to enhance the tribological performance of the hydrodynamic journal…

Abstract

Purpose

This study aims to purpose the suitable location of slip boundary condition and microscale surface textures to enhance the tribological performance of the hydrodynamic journal bearings.

Design/methodology/approach

Mass conserving Elrod cavitation algorithm with considering slip boundary condition has been used for predicting the static performance characteristics (load carrying capacity, coefficient of friction and volumetric inflow rate) of finite cylindrical shape textured journal bearings.

Findings

It has been observed that the full textured bearing with slip boundary condition in between 0°–180° circumferential region gives a significant reduction in the lubricant rupture zone. However, the introduction of textures up to the interface of slip and the no-slip region is increasing the load-carrying capacity and reduces the shear stress. This reduction in shear stress with combined slip and surface textures is effective in increasing the volumetric inflow rate of the lubricant.

Practical implications

The combined effect of slip boundary condition and surface texturing is increasing the scope of liquid lubricants in hydrodynamic journal bearings and further contributing toward the development of small-scale rotating machines.

Originality/value

The study related to the use of mass conserving Elrod cavitation algorithm for finding the optimum location of slip and surface texture zones has been found rare in the literature. Previous studies show that the mass conserving Elrod cavitation algorithm gives realistic results for textured bearings and its findings show good agreement with the experimental observations.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 2019

Prashant Rangrao Jagtap and Sachin M. Pore

This study aims to use carbon fiber-reinforced polymer (CFRP) laminates to strengthen the compression flange of structural I-beam so as to avoid local failure of compression…

Abstract

Purpose

This study aims to use carbon fiber-reinforced polymer (CFRP) laminates to strengthen the compression flange of structural I-beam so as to avoid local failure of compression flange and to take a load to its full capacity. Light weight beam (LB) 100 at 5.1 kg/m and LB 115 at 8.1 kg/m are used for this purpose. The compression flange of a beam is well prepared to ensure a rust-free surface so as to achieve proper bonding between the flange and fiber sheet to avoid de-bonding at the time of testing. A flange of the beam is strengthened using CFRP sheets applied to it with the help of adhesive. The beam with CFRP is cured in air for 48 h before testing. Experiments are performed in a loading frame of 100 T capacity. Results show that the load carrying capacity of the strengthened beam increased by 25-30 per cent compared to the control beam (non-strengthened), and the local failure of the compression flange due to the applied load is totally avoided. The elastic behavior of the strengthened beam is also increased compared to the non-strengthened beam, which gives a higher yield point.

Design/methodology/approach

Different methods exist for strengthening various structures. Use of CFRP appears to be an excellent solution. Vast research has been conducted on the use of CFRP for strengthening and retrofitting of steel structures. The load carrying capacities of steel beams can be increased by strengthening their compression flange by using CFRP and avoiding the local failure of beams at early stages.

Findings

The load carrying capacity of a beam strengthened with CFRP increased by 25-30 per cent compared to the non-strengthened beam. In addition, the elastic behavior of the strengthened beam is also improved.

Originality/value

The compression flange of the steel beam is strengthened using different layers of CFRP strips to avoid the local failure, and its deflection is observed using linear variable deformation transducer.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 April 2003

Jaw‐Ren Lin

The squeeze‐film characteristics between two parallel rectangular plates with an electrically conducting fluid in the presence of a transverse magnetic field are analyzed. The…

Abstract

The squeeze‐film characteristics between two parallel rectangular plates with an electrically conducting fluid in the presence of a transverse magnetic field are analyzed. The squeeze‐film Reynolds equation applicable to the curved surfaces is derived using the continuity equation and the magneto‐hydrodynamic (MHD) motion equations. A closed‐form solution is obtained for the squeeze‐film pressure of parallel rectangular plates, and applied to predict the squeeze‐film behavior. According to the results, the presence of magnetic fields signifies an enhancement in the squeeze‐film pressure. On the whole, the magnetic‐field effect characterized by the Hartmann number provides an increase in value of the load‐carrying capacity and the response time as compared to the classical non‐conducting lubricant case, especially for larger values of the aspect ratio or smaller values of film height.

Details

Industrial Lubrication and Tribology, vol. 55 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 June 2022

Mohammed Kardoudi, Mohamed Nabhani and Mohamed El Khlifi

This paper aims to present a numerical model to examine the finite magneto-hydrodynamic (MHD) journal bearings performances including both non-Newtonian couple stress and bearing…

Abstract

Purpose

This paper aims to present a numerical model to examine the finite magneto-hydrodynamic (MHD) journal bearings performances including both non-Newtonian couple stress and bearing deformation impacts.

Design/methodology/approach

Based upon the MHD and Stokes theories, a novel expression of modified Reynolds equation including bearing deformation is obtained. The bearing elastic deformation impact is predicted by means of the Winkler model. Using the numerical differentiation approach, the film pressure is iteratively solved. Different bearing characteristics are then numerically calculated. The validity of the proposed model was verified by comparing with some particular cases from literature.

Findings

From the numerical presented results, it is demonstrated that the conducting couple stress lubricant with an applied radial magnetic field results in an induced electric current density and thus significantly improves the performances of elastic journal bearings. Particularly, the load-carrying capacity is increased, whereas a reduction in friction factor is observed.

Originality/value

This numerical model is original, which combines both non-Newtonian couple stress and bearing deformation impacts on finite MHD journal bearings performances. It provides useful information in designing MHD journal bearings, given the lack of experimental studies.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000