Search results

1 – 10 of 329
Article
Publication date: 12 March 2018

Haibin Geng, Jinglong Li, Jiangtao Xiong, Xin Lin, Dan Huang and Fusheng Zhang

As known, the wire and arc additive manufacture technique can achieve stable process control, which is represented with periodic surface waviness, when using empirical methods or…

Abstract

Purpose

As known, the wire and arc additive manufacture technique can achieve stable process control, which is represented with periodic surface waviness, when using empirical methods or feedback control system. But it is usually a tedious work to further reduce it using trial and error method. The purpose of this paper is to unveil the formation mechanism of surface waviness and develop a method to diminish it.

Design/methodology/approach

Two forming mechanisms, wetting and spreading and remelting, are unveiled by cross-section observation. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters.

Findings

Finally, a theoretical method is developed to optimize surface waviness, even forming a smooth surface by establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed).

Originality/value

Formation mechanisms are revealed by observing cross-section morphology. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters. A mathematical model is developed to optimize surface waviness, even forming a smooth surface through establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed).

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 June 2022

Arun Bangotra and Sanjay Sharma

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper…

Abstract

Purpose

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper oxide (CuO) and cerium oxide (CeO2) nanoparticles.

Design/methodology/approach

The static performance parameters of bearings with surface waviness and the addition of nanoparticles in lubricants were calculated using the nondimensional form of Reynolds equation and finite element method. Static performance parameters are calculated at different waviness numbers in the circumferential, axial and both directions at various wave amplitudes with variable viscosities of lubricants with nanoparticles using the viscosity equation forming a relationship between the relative viscosity, temperature and weight fraction of nanoparticles in lubricant developed from the experimental results.

Findings

The computed results indicate that the impact of waviness on the bearing surface enhances the load capacity, reduces friction coefficient, and is more effective in the circumferential direction than in the axial direction or in both directions. The addition of CuO and CeO2 to the lubricant enhanced its viscosity which further improved the steady-state parameters of the wave bearing.

Research limitations/implications

This study is based on a numerical technique, which has significant limitations, and the simulated results must be tested experimentally.

Practical implications

The current findings will be beneficial for designers to improve the performance of hydrodynamic journal bearings.

Originality/value

The calculated results demonstrate that the combined effect of the surface waviness on bearings and the addition of nanoparticles to lubricants can greatly increase the performance of hydrodynamic journal bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2003

Prodip Kumar Das, Shohel Mahmud, Syeda Humaira Tasnim and A.K.M. Sadrul Islam

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of…

Abstract

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of two parallel wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal. Two straight‐vertical sidewalls are considered adiabatic. Governing equations are discretized using the control volume based finite‐volume method with collocated variable arrangement. Simulation was carried out for a range of surface waviness ratios, λ=0.00‐0.25; aspect ratios, A=0.25‐0.5; and Rayleigh numbers Ra=100‐107 for a fluid having Prandtl number equal to 1.0. Results are presented in the form of local and global Nusselt number distributions, streamlines, and isothermal lines for different values of surface waviness and aspect ratios. For a special case of λ=0 and A=1.0, the average Nusselt number distribution is compared with available reference. The results suggest that natural convection heat transfer is changed considerably when surface waviness changes and also depends on the aspect ratio of the domain. In addition to the heat transfer results, the heat transfer irreversibility in terms of Bejan number (Be) was measured. For a set of selected values of the parameters (λ, A, and Ra), a contour of the Bejan number is presented at the end of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2018

Belkallouche Abderrahmane, Tahar Rezoug and Laurent Dala

Aircraft noise is dominant for residents near airports when planes fly at low altitudes such as during departure and landing. Flaps, wings, landing gear contribute significantly…

Abstract

Purpose

Aircraft noise is dominant for residents near airports when planes fly at low altitudes such as during departure and landing. Flaps, wings, landing gear contribute significantly to the total sound emission. This paper aims to present a passive flow control (in the sense that there is no power input) to reduce the noise radiation induced by the flow over the cavity of the landing gear during take-off and landing.

Design/methodology/approach

The understanding of the noise source mechanism is normally caused by the unsteady interactions between the cavity surface and the turbulent flows as well as some studies that have shown tonal noise because of cavity resonances; this tonal noise is dependent on cavity geometry and incoming flow that lead us to use of a sinusoidal surface modification application upstream of a cavity as a passive acoustics control device in approach conditions.

Findings

It is demonstrated that the proposed surface waviness showed a potential reduction in cavity resonance and in the overall sound pressure level at the majority of the points investigated in the low Mach number. Furthermore, optimum sinusoidal amplitude and frequency were determined by the means of a two-dimensional computational fluid dynamics analysis for a cavity with a length to depth ratio of four.

Research limitations/implications

The noise control by surface waviness has not implemented in real flight test yet, as all the tests are conducted in the credible numerical simulation.

Practical implications

The application of passive control method on the cavity requires a global aerodynamic study of the air frame is a matter of ongoing debate between aerodynamicists and acousticians. The latter is aimed at the reduction of the noise, whereas the former fears a corruption of flow conditions. To balance aerodynamic performance and acoustics, the use of the surface waviness in cavity leading edge is the most optimal solution.

Social implications

The proposed leading-edge modification it has important theoretical basis and reference value for engineering application it can meet the demands of engineering practice. Particularly, to contribute to the reduce the aircraft noise adopted by the “European Visions 2020”.

Originality/value

The investigate cavity noise with and without surface waviness generation and propagation by using a hybrid approach, the computation of flow based on the large-eddy simulation method, is decoupled from the computation of sound, which can be performed during a post-processing based on Curle’s acoustic analogy as implemented in OpenFOAM.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 November 2020

Alasdair Soja, Jun Li, Seamus Tredinnick and Tim Woodfield

Additive manufacturing (AM) has the potential to revolutionise the fabrication of complex surgical instruments. However, AM parts typically have a higher surface roughness…

Abstract

Purpose

Additive manufacturing (AM) has the potential to revolutionise the fabrication of complex surgical instruments. However, AM parts typically have a higher surface roughness compared to machined or fine cast parts. High surface roughness has important implications for surgical instruments, particularly in terms of cleanliness and aesthetic considerations. In this study, bulk surface finishing methods are described to produce end-use selective laser melting parts.

Design/methodology/approach

The aim was to achieve a surface finish as close as possible to machined parts (Ra = 0.9 µm, Wa = 0.2 µm, Pv = 7.3 µm). A sample coupon was designed to systematically evaluate different finishing techniques. Processes included bulk finishing, blasting and centrifugal finishing methods on individual parts, as well as heat treatment before and after surface finishing.

Findings

Abrasive blasting or centrifugal finishing alone was not adequate to achieve an end-use surface finish. White oxide vapour blasting at high water pressure was the most effective of the abrasive blasting processes. For centrifugal finishing, a 4 h runtime resulted in an acceptable reduction in surface roughness (Ra = 2.9 µm, Wa = 2.0 µm, Pv = 34.6 µm: inclined surface [30°]) while not significantly increasing part radii. The combination of finishing methods resulting in the smoothest surfaces was white oxide blasting followed by 4 h of centrifugal finishing and a final glass bead blast (Ra = 0.6 µm, Wa = 0.9 µm, Pv = 6.9 µm: inclined surface [30°]). The order of these methods was important because white oxide blasting was significantly less effective when applied after the centrifugal finishing.

Originality/value

Collectively, these results describe the development of a practical bulk finishing method for stainless steel surgical instruments produced by AM.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2009

Cem Sinanoğlu

The purpose of this paper is to study the effects of shaft surface profiles on the load carriage capacity of journal bearings using an experimental and neural network approach…

Abstract

Purpose

The purpose of this paper is to study the effects of shaft surface profiles on the load carriage capacity of journal bearings using an experimental and neural network approach. The paper aims to inspect the performance characteristics of journal bearing systems; the presence of transverse and longitudinal roughness on journal‐shaft surfaces is studied using the proposed neural network.

Design/methodology/approach

The collected experimental data such as pressure variations are employed as training and testing data for an artificial neural network (ANN). Quick propagation algorithm is used to update the weight of the network during the training.

Findings

As a result, a shaft with a transverse profile displays a favorable performance as far as load carriage capacity is concerned. Moreover, the proposed neural network structure outperforms the available experimental model in predicting the pressure as well as the load carriage capacity.

Originality/value

The paper discusses a new modelling scheme known as ANN. A neural network predictor has been employed to analyze the effects of shaft surface profiles in the hydrodynamic lubrication of journal bearings.

Details

Industrial Lubrication and Tribology, vol. 61 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

T.S. Lee, C.F. How, Y.J. Lin and T.O. Ting

The purpose of this paper is to investigate and contribute to a better understanding of cutting process characteristics using the proposed RBD Palm Olein-based organic mixed…

Abstract

Purpose

The purpose of this paper is to investigate and contribute to a better understanding of cutting process characteristics using the proposed RBD Palm Olein-based organic mixed coolant.

Design/methodology/approach

In this research, refined, bleached and deodorized (RBD) Palm Olein is selected as the base oil for organic coolant and mixed coolant (base oil mixed with chemicals) to compare with the cutting performance of industrial water-soluble chemical (inorganic) coolant. Using coated carbide tool, JIS SS400 Mild Steel was tested in milling process. At fixed spindle speed, the relations between feed rate and depth of cut (DOC) on cutting temperature and surface roughness were investigated. Also, the dynamic viscosity, specific heat capacity and pH level for each coolant are taken into consideration.

Findings

As predicted, cutting fluid with lower viscosity removes more heat. The cutting temperature increased with increasing feed rate and DOC. However, surface roughness increased with increasing feed rate but decreased with increasing DOC. From the data gathered, the proposed RBD Palm Olein-based organic mixed coolant showed better heat removal properties than organic coolant and it produced a far better machined surface than inorganic coolant.

Originality/value

Overall, the proposed organic mixed coolant has shown great potential to be a good cutting fluid when balance between cooling properties and lubricity, and consistent quality of cutting fluids are sought to produce environmental friendly quality workpiece.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 2002

Irem Y. Tumer and Edward M. Huff

The variations introduced during the production and maintenance of rotating machinery components are correlated with the vibration and noise emanating from the final system during…

Abstract

The variations introduced during the production and maintenance of rotating machinery components are correlated with the vibration and noise emanating from the final system during its operational lifetime. Vibration and noise are especially unacceptable elements in high‐risk systems such as helicopters and aircraft engines, resulting in premature component degradation and a potentially unsafe flying environment. In such applications, individual components often are subject to 100 per cent inspection following production and during operation through rigorous maintenance, resulting in increased product development cycles and high production and operation costs. In this work, the aim is to provide engineers with a technique to evaluate vibration modes and levels for each component or subsystem prior to putting them into operation. This paper presents a preliminary investigation of the correlation of manufacturing and assembly variations with vibrations, using an experimental test rig. A factorial design is used to study the effects of various factors. Challenges in developing a process monitoring and inspection methodology to predict performance quality are identified, followed by a discussion of future work.

Details

Journal of Quality in Maintenance Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 13 March 2007

Emel Ceyhun Sabir and Erdem Koç

The main purpose of the study is to develop a theoretical model being capable of analysing the sealing and hydrodynamic‐hydrostatic lubrication mechanisms occuring between the…

Abstract

Purpose

The main purpose of the study is to develop a theoretical model being capable of analysing the sealing and hydrodynamic‐hydrostatic lubrication mechanisms occuring between the mating surfaces of mechanical face seals.

Design/methodology/approach

The theoretical model developed is based on solving the governing basic lubrication equation (Reynolds differential equation) by employing a finite difference method. The main lubrication machanism is assumed to be converging‐diverging wedge which is formed by the relative tilt of the sealing surfaces. The non‐dimensional Reynolds equation was solved to give the pressure distribution and consequently the load and moment acting on the movable seal ring. The aim of the model is to predict the non‐dimensional hydrodynamic and hydrostatic load carrying capacity of the system.

Findings

Theoretical model developed is capable of estimating the hydrodynamic and hydrostatic behaviour of mechanical radial face seals. It is shown that a converging‐diverging wedge mechanism produces hydrodynamic pressure which in turn maintains the seperation of the surfaces. The tilt appears to be caused mainly by bearing misalignment. It has been shown that hydrostatic load or pressure centre is an important parameter for load balance of moving seal ring. It is easy and useful to calculate the dimensional parameters defined taking into account the different geometrical and operating parameters.

Originality/value

This paper offers a quick and easy opportunity to examine the hydrodynamic behaviour of movable seal ring of a mechanical face seal and provides a considerable contribution to the lubrication and sealing research area. With the general theoretical model developed, the behaviour of the seal ring can be modelled and estimated.

Details

Industrial Lubrication and Tribology, vol. 59 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Feng Cheng, Weixi Ji and Junhua Zhao

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate…

Abstract

Purpose

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate influence of adhesion strength on cavitation erosion resistance of DLC coating.

Design/methodology/approach

Three DLC coatings with different adhesion strengths were grown on the 304 steel surfaces by using a cathodic arc plasma deposition method. Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of a DLC coating. The cavitation mechanism of the substrate-coating systems was further discussed by means of surface analyses.

Findings

The results indicated that, the residual stress decreased and then increased with the increasing DLC coating thickness from 1 µm to 2.9 µm, and the lower residual stress can improve the adhesion strength of the DLC coating to the substrate. It was also concluded that, the plastic deformation as well as the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion strength. However, lower residual stress and better adhesion strength could help resist the occurrence of the coating fracture.

Originality/value

Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of the DLC coating. The plastic deformation and the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion of coating. Lower residual stress and better adhesion of coating could resist the occurrence of the DLC coating fracture.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 329