Search results

1 – 10 of 187
Article
Publication date: 3 June 2014

Liu Ping, Wang Dongyun, Li Yanbin, Guo Yanqing and Hao Lifeng

The purpose of this paper is to develop a potential nanoparticles lubricant additive for solving the problem of the insolubility and stable dispersity; the complex nanoparticles

Abstract

Purpose

The purpose of this paper is to develop a potential nanoparticles lubricant additive for solving the problem of the insolubility and stable dispersity; the complex nanoparticles with core-shell structures are less studied in the field. Therefore, this paper determines novel complex nanoparticles and their tribological properties.

Design/methodology/approach

According to the conventional preparation method, the complex nanoparticle styrene/calcium borate (PS/O-CaB) was synthesized. The microstructures of the as-obtained samples were characterized by X-ray diffraction infrared spectroscopy and thermogravimetric analysis. Tribological properties of PS/O-CaB used as lubricating oil additive were evaluated on four-ball tribometer. The worn surface of the steel ball was investigated by a three-dimensional non-contact surface profilometer and X-ray photoelectron spectroscopy (XPS).

Findings

The results of the structure characteristic indicate two different crystalline forms, namely, Ca2B6O11 and Ca2B2O5, and the average size of calcium borate nanoparticles in PS/O-CaB is about 20-40 nm. Moreover, the good tribological properties are due to a wear resistance film containing both depositions and the tribochemical reaction products which comprise B2O3, FeB and Fe2O3.

Originality/value

Novel complex nanoparticles with core-shell structure (PS/O-CaB) were successfully prepared. Moreover, the PS/O-CaB shows excellent tribological capacity such as load-carrying, friction-reducing and antiwear property.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2014

Xugang Zhang, Bin Zhang, Mingming Sun, Jianhui Li, Lei Wang and Chuanli Qin

– In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Abstract

Purpose

In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Design/methodology/approach

Functionalized CSNPs containing epoxy groups on the surface were synthesized by emulsion polymerization with butyl acrylate as the core and methyl methacrylate copolymerizing with glycidyl methacrylate (GMA) as the shell. CSNPs were used as toughening agents for epoxy resins and their chemical structure was characterized by FT-IR. The morphology of modified epoxy networks (MEPN) was analyzed by SEM and TEM. Both the mechanical properties and thermodynamic properties were studied.

Findings

The results show that nearly spherical CSNPs with the particle size of 50-100 nm are obtained. A certain amount of CSNPs are uniformly dispersed in epoxy resins by the grinding method and the MEPN shows the ductile fracture feature. The miscibility between CSNPs and epoxy matrix increases with the increase of GMA concentration which makes more bonds form between them. Epoxy resins toughened with 10 wt% CSNPs containing 10 wt% GMA show the best mechanical properties and the increase in tensile strength and impact strength of the MEPN is 13.5 and 59.7 percent, respectively, over the unmodified epoxy networks. And the improvement in impact strength is not accompanied with loss of thermal resistance.

Practical implications

The MEPN can be used as high-performance materials such as adhesives, sealants and matrixes of composites.

Originality/value

The functionalized CSNPs are novel and it can greatly increase the toughness of epoxy resins without loss of thermal resistance.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Zhang Lei, Yingshan Chen, Zhiwen Liu, Wenjin Ji and Suqing Zhao

In this study, a highly sensitive and quantitative analysis method using surface-enhanced Raman scattering (SERS)-labeled immunoassay is adopted for bisphenol A bisphenol A (BPA…

230

Abstract

Purpose

In this study, a highly sensitive and quantitative analysis method using surface-enhanced Raman scattering (SERS)-labeled immunoassay is adopted for bisphenol A bisphenol A (BPA) detection in water samples.

Design/methodology/approach

Primarily, an excellent SERS immuno-nanoprobe is prepared, which relays on Au/Ag core-shell nanoparticles tagged 4-mercaptobenzoic acid (4MBA) and labeled with specific antibody against BPA. Second, the coating antigen of 4,4-Bis(4-hydroxyphenol) valeric acid (BVA) coupling poly-L-lysine (PLL) conjugate (BVA-PLL) is fastened on the substrate. Based on competitive immunoassay, the antibody labeled on SERS immuno-nanoprobe will bind with the free BPA and BVA-PLL competitively.

Findings

A calibration curve was obtained by plotting the intensity of SERS signal of 4MBA at 1007 cm−1 versus the concentration of BPA. The results indicated that the limit of detection (LOD) for BPA is 1 ng/mL and present a great capacity for higher sensitivity. Furthermore, the method was able to quantitatively detect BPA in water samples, which was validated by high performance liquid chromatography (HPLC).

Originality/value

The method was developed based on competitive immunoassay, and the conjugate (BVA-PLL) was chosen as the coating antigen. Au/Ag core-shell nanoparticles played as the SERS active substrate and were labeled with Raman reporter. The value of this paper is supplying a wide potential for analysis of target analytes in the environmental monitoring and food safety.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 May 2023

Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…

Abstract

Purpose

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.

Findings

The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.

Originality/value

In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 February 2018

Susan Samadi, Ghasem Asadi Cordshooli, Mohammad Yousefi, Khadijeh Kalateh and SeyedAmirabbas Zakaria

This paper aims to introduce constructed CeO2/TiO2 core/shell nanoparticle as sensitive substance organic compounds.

Abstract

Purpose

This paper aims to introduce constructed CeO2/TiO2 core/shell nanoparticle as sensitive substance organic compounds.

Design/methodology/approach

The CeO2 nanoparticles were synthesized by hydrothermal treatment. Then CeO2/TiO2 core/shell was fabricated by sol–gel method preparation of TiO2 in the presence of ceria nanoparticles and applied as the sensitive material to make a sensor.

Findings

Formation of the nanoparticles was confirmed by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The synthesized sensor exhibited not only good sensitivity to volatile organic compounds at room temperature but also logarithm of sensitivity versus concentrations was linear.

Research limitations/implications

The sensor shows acceptable sensitivity to volatile organic compound at room temperature.

Practical implications

Experimental data revealed satisfactory reproducibility and short response and recovery times.

Originality/value

A radical mechanism for gas sensor reaction in two pathways was considered and activation energies were calculated by density functional theory (DFT) method to describe different sensitivities of tested volatile gases. The experimental results were consistent with the calculations.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 March 2016

Yoshio Kobayashi, Tetsuya Ayame, Kyosuke Shibuya, Tomohiko Nakagawa, Yohsuke Kubota, Kohsuke Gonda and Noriaki Ohuchi

This paper aims to propose a simple method for stabilizing silica-coated silver iodide (AgI/SiO2) core-shell particles, of which a colloid solution functions as an X-ray contrast…

Abstract

Purpose

This paper aims to propose a simple method for stabilizing silica-coated silver iodide (AgI/SiO2) core-shell particles, of which a colloid solution functions as an X-ray contrast agent.

Design/methodology/approach

A colloid solution of AgI nanoparticles was prepared by mixing silver perchlorate and potassium iodide in water. The AgI/SiO2 nanoparticles were fabricated by a sol-gel method using NaOH, H2O and tetraethylorthosilicate in ethanol in the presence of AgI nanoparticles surface-modified with 3-mercaptopropyltrimethoxysilane.

Findings

The silica shells of AgI/SiO2 particles were dissolved near the AgI nanoparticle surface, when they were washed by a process composed of centrifugation, removal of supernatant with decantation, addition of water as a washing solution and a shake with a vortex mixer. In contrast, the shells were not damaged by using ethanol as the washing solution, i.e. ethanol-washing. An X-ray photoelectron spectroscopy spectrum of the silica was changed after the ethanol-washing, which indicated that the ethanol-washing had an effect on the chemical bonds in silica. The effect also acted on the silica shells of AgI/SiO2 particles, which did not damage the core-shell structure, i.e. controlled the dissolution of shell.

Originality/value

The paper demonstrates that the ethanol-washing is quite useful for stabilizing the core-shell structure composed of the silica shells.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 January 2018

Yanfei Yang, Xiaobo Wang, Sen Mei, Xing Zhu, Shiqiang Chen, Peng Xiong, Zhihai Hu, Kun Xiong and Dong Song Yuan

The purpose of this paper is to investigate the tribological performance and mechanisms of BN/calcium borate nanocomposites (BCBNs) as additives in lubricating oil.

223

Abstract

Purpose

The purpose of this paper is to investigate the tribological performance and mechanisms of BN/calcium borate nanocomposites (BCBNs) as additives in lubricating oil.

Design/methodology/approach

BCBNs were prepared by heterogeneous deposition method. And the morphology and structure of samples were analysed by transmission electron microscopy, Fourier transform infrared spectra and X-ray powder diffraction pattern. The maximum non-seizure load (PB) of samples was tested using four-ball friction tester. The average friction coefficients and wear tracks were obtained. In addition, tribological mechanism was also investigated using optical microscope, energy dispersive spectroscopy and X-ray photoelectron spectroscope.

Findings

It was found that the nanocomposites present core-shell nanostructure with the thickness of shell around 12 nm and the diameter of particles 100-200 nm, and tribological tests indicate that the PB value of BCBNs was increased by 113 per cent, whereas the average friction coefficient was decreased by 23.6 per cent and the bloom’s wear area was also decreased by 25.2 per cent.

Originality/value

This paper involves investigation on tribological properties and mechanism of the BCBNs with core-shell structure.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 October 2021

Yanqiu Xia, Chuan Chen, Xin Feng and Zhengfeng Cao

The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of…

157

Abstract

Purpose

The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of lithium-based complex grease.

Design/methodology/approach

The core-shell Ag@PAN was prepared by a simple method and was introduced into the lithium-based complex grease. The typical properties of Ag@PAN were investigated by scanning electron microscopy (SEM), Fourier transforms infrared spectrometer and thermal gravimetric analyzer. The tribological properties were evaluated under different conditions. After the tribological test, the worn surface was analyzed by SEM and X-ray photoelectron spectroscopy to probe the lubrication mechanisms.

Findings

The prepared Ag@PAN could greatly improve the friction reduction and wear resistance of the friction pair under different conditions. The preferable tribological performances were mainly attributed to the synergism of various lubrication mechanisms including “mending effect,” “rolling effect” and lubricating protective film, and so on.

Originality/value

This study synthesizes a new kind of core-shell Ag@PAN as a lubricant additive, and it possesses preferable friction reduction and anti-wear abilities.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2016

Swee-Yong Pung, Yim-Leng Chan, Srimala Sreekantan and Fei-Yee Yeoh

The purpose of this study is to synthesize a semiconductor photocatalyst which responds to both UV light and visible light in removal of organic dyes.

Abstract

Purpose

The purpose of this study is to synthesize a semiconductor photocatalyst which responds to both UV light and visible light in removal of organic dyes.

Design/methodology/approach

ZnO nanoparticles were pre-synthesised via sol-gel method using zinc nitrate tetrahydrate and methanamine at 90°C for 20 h. Subsequently, the as-synthesised ZnO nanoparticles were filtered, washed and dried. To synthesize ZnO-MnO2 core shell nanocomposites (CSNs), 2:3 M ratio of KMnO4 and MnSO4 solution was stirred for an hour. Next, ZnO nanoparticles were added into the solution. The solution was heated at 160°C for 3 h for the formation of ZnO-MnO2 CSNs. The structural, optical and photocatalytic properties of ZnO-MnO2 CSNs were characterised by field emission scanning electron microscope, transmission electron microscopy (TEM), X-ray diffractometer and PL spectroscopy, respectively.

Findings

The photodegradation efficiencies of rhodamine B (RhB) dye by ZnO-MnO2 CSNs as photocatalysts are 87.1 per cent under UV irradiation and 76.6 per cent under visible light irradiation, respectively. Their corresponding rate constants are 0.016 min−1 under UV irradiation and 0.013 min−1 under visible light irradiation. It can be concluded that N-deethylation was the dominant step during the photodegradation of RhB dye as compared to cycloreversion. The ZnO-MnO2 CSNs demonstrated good photostability after three consecutive runs.

Originality/value

ZnO-MnO2 CSN photocatalyst which could response to UV and visible light in degradation of RhB dye was synthesised using sol-gel method. The analysis shows that N-deethylation was the key photodegradation mechanism of RhB by ZnO-MnO2 CSN.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2009

A. Kalendova and D. Vesely

The purpose of this paper is to synthesize MeO‐type pigments, focusing on the oxides containing zinc and magnesium.

Abstract

Purpose

The purpose of this paper is to synthesize MeO‐type pigments, focusing on the oxides containing zinc and magnesium.

Design/methodology/approach

Oxides ZnO and MgO were synthesized, their morphology was evaluated, and their impact on the physical properties of the paint film were assessed. A pigment of ZnO/core‐shell type also was synthesized. The physical‐chemical property of the synthesized pigments and the anticorrosion efficiencies of the paint films pigmented by them were determined. The binder used in the researched coatings was epoxy‐ester resin.

Findings

The shape of the particles was identified in the synthesized pigments. X‐ray diffraction analysis revealed the degree of precipitation and lattice parameters. All of the synthesized pigments had good anticorrosion efficiency in an epoxyester coating.

Practical implications

The synthesized pigments can be used conveniently in coatings protecting metal substrates against corrosion.

Originality/value

Of benefit is the fact that the synthesized pigments do not contain any environmentally harmful substances.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 187