Search results

1 – 10 of 260
Article
Publication date: 1 May 1999

M. M’Hamdi, H. Combeau and G. Lesoult

The general aim of this work is to calculate the extent of the equiaxed zone in continuously cast steel products. Free equiaxed grains can grow only in undercooled liquid regions…

1141

Abstract

The general aim of this work is to calculate the extent of the equiaxed zone in continuously cast steel products. Free equiaxed grains can grow only in undercooled liquid regions. Undercooling of the bulk liquid occurs because the columnar dendrite tips growing from the mould reject solutes in the liquid. The specific aim of this contribution is to calculate the thermal and physical state of continuously cast steel long products assuming a columnar solidification mode, taking into account the tip undercooling at the solidification front. A 2‐D heat transfer model has been developed where the columnar solidification mode is assumed. The calculation of the undercooling at the advancing solidification front is coupled with the heat transfer equation. The comparison between the results of the present model and the classical heat transfer model indicates the importance of modelling the undercooling phenomenon. The influence of the secondary cooling has also been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 July 2019

Mirosław Seredyński and Jerzy Banaszek

Proper selection of the stability parameter determines the accuracy of dendrite tip kinetics at a single crystal scale. Recently developed sophisticated phase field modelling of a…

Abstract

Purpose

Proper selection of the stability parameter determines the accuracy of dendrite tip kinetics at a single crystal scale. Recently developed sophisticated phase field modelling of a single grain evolution provides evidence that this parameter is not constant during the process. Nevertheless, in the commonly used micro-macroscopic simulations of alloy solidification, it is a common practice to use a constant value of the stability parameter, resulting from the marginal stability theory. This paper aims to address the issue of how this inaccuracy in modelling crystal growth kinetics can influence numerically predicted zones of columnar and equiaxed dendrites and the macro-segregation formation.

Design/methodology/approach

Using the original authors’ micro-macroscopic computer simulation model of binary alloy solidification, the calculations have been performed for the Kurz-Giovanola-Trivedi (KGT) crystal growth kinetics with two different values of the stability parameter, and for two different compositions of Al-Cu alloys. The computational model is based on single domain-based formulation of transport equations, which are discretized on control-volume mesh. To identify zones of different grain structures, developing within the two-phase liquid-solid region, an envelope of columnar dendrite tips is tracked on a fixed non-orthogonal, triangular control volume grid. The models of porous and slurry media are used, along with the concept of the switching function, to account for diverse flow resistances in the columnar and equiaxed crystal zones. The numerical predictions are carefully studied to address the question of how the chosen stability parameter influences macroscopic structures of a cast, the most important issue from the engineering point of view.

Findings

The carried-out comprehensive numerical analysis shows that the value of the stability parameter of the KGT-constrained dendrite growth model does not have a direct significant impact on the macrosegregation formation. It, however, visibly influences the undercooling along the front, separating different dendritic structures and the size of the undercooled melt region where the equiaxed grains can develop. It also affects the amount of eutectic phase created.

Originality/value

To the best of the authors’ knowledge, this is the first attempt at estimating the influence of some inaccuracies, caused by possible ambiguities in choosing the stability constant of the KGT law, on numerically predicted macroscopic fields of solute concentration, the developing zones of columnar and equiaxed crystals and the macrosegregation patterns.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2017

Karl P. Davidson and Sarat B. Singamneni

This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).

Abstract

Purpose

This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).

Design/methodology/approach

A priori data on energy density levels most appropriate to consolidation of duplex stainless steel powders through SLM served as the basis to converge on the laser settings. Experimental designs with varying laser power and scan speeds and test pieces generated allowed metallographic evaluations based on optical and scanning electron microscopy and electro backscatter diffraction analyses.

Findings

Duplex stainless steel powders are established for processing by SLM. However, the dynamic point heat source and associated transient thermal fields affect the microstructures to be predominantly ferritic, with grains elongated in the build direction. Austenite precipitated either at the grain boundaries or as Widmanstätten laths, whereas the crystallographic orientations and the grain growth are affected around the cavities. Considerable CrN precipitation is also evidenced.

Originality/value

Duplex stainless steels are relatively new candidates to be brought into the additive manufacturing realm. Considering the poor machinability and other difficulties, the overarching result indicating suitability of duplex powders by SLM is of considerable value to the industry. More significantly, the metallographic evaluation and results of the current research allowed further understanding of the material consolidation aspects and pave ways for fine tuning and establishment of the process-structure-property relationships for this important process-material combination.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 April 2014

Miroslaw Seredyński and Jerzy Banaszek

The purpose of this paper is to endorse the idea of using a special post-calculating front tracking (FT) procedure, along with the enthalpy-porosity front tracking (EP-FT) single…

Abstract

Purpose

The purpose of this paper is to endorse the idea of using a special post-calculating front tracking (FT) procedure, along with the enthalpy-porosity front tracking (EP-FT) single continuum model, in order to identify zones of different dendritic microstructures developing in the mushy zone during cooling and solidification of a binary alloy.

Design/methodology/approach

The 2D and 3D algorithms of the FT approach along with different crystal growth laws were implemented in macroscopic calculations of binary alloy solidification with the identification of different dendrite zones developing during the process.

Findings

Direct comparison of results predicted by the FT model with that based on the concept of the critical value of the solid volume fraction shows the sensitivity of the latter on an arbitrary assumed value of the dendrite coherency point (DCP). Moreover, for a carefully chosen DCP value the second model provides results that are close to those given by the FT-based approach. It is also observed that the macro-segregation pattern obtained by the proposed method is hardly influenced by chosen dendrite tip kinetics.

Originality/value

To the best authors’ knowledge, for the first time the 3D FT model has been used along with the enthalpy porosity approach to simulate the development of zones of different dendrite morphology during binary alloy solidification. And, a weak influence of assumed different dendrite tip kinetics on the macro-segregation pattern has been proved, what justifies this underlying assumption of the EP-FT method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 November 2020

Abid Ullah, HengAn Wu, Asif Ur Rehman, YinBo Zhu, Tingting Liu and Kai Zhang

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the…

Abstract

Purpose

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed.

Design/methodology/approach

Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment.

Findings

Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens.

Originality/value

TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.

Article
Publication date: 17 October 2017

Joshua Gale and Ajit Achuhan

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building…

Abstract

Purpose

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building process provides a unique opportunity to enhance mechanical properties by applying treatments that previously were possible only on the surface in traditional manufacturing techniques. The purpose of the study is to examine the effect of ultrasonic peening (UP) applied during a layer-by-layer direct metal laser sintering (DMLS) fabrication of 316L stainless steel on its mechanical properties and microstructure.

Design/methodology/approach

Uniaxial tensile tests were performed at 1.27 mm/s to determine the effect of UP treatment on the average global behavior of a 316L part, whereas hardness measurements using nanoindentation were performed to determine the modification of local mechanical properties. Compressive buckling tests at a loading rate of 3 mm/min were performed on sample coupons with a large aspect ratio to evaluate the effect of UP on any potential delamination of DMLS layers. Techniques such as optical and scanning electron microscopy (SEM) imaging were utilized to determine the effect of UP on the microstructure.

Findings

Overall, significant modification in mechanical properties such as hardness and yield strength, along with microstructure, was observed. Large increases in both the average global and local mechanical properties, as well as a disruption in the columnar grain microstructure, was observed in DMLS parts treated with UP treatment.

Originality/value

Results indicate an opportunity for UP to be used as an in-situ process during AM processes for dynamically altering the mechanical behavior, microstructure, and distortion due to residual stress formation, in a tunable fashion.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 July 2021

Manoj Kumar, Gregory J. Gibbons, Amitabha Das, Indranil Manna, David Tanner and Hiren R. Kotadia

The purpose of this study is to investigate the microstructural evolution of high-strength 2024 Al alloy prepared by the laser powder bed fusion (L-PBF) additive manufacturing…

1086

Abstract

Purpose

The purpose of this study is to investigate the microstructural evolution of high-strength 2024 Al alloy prepared by the laser powder bed fusion (L-PBF) additive manufacturing (AM) route. The high-strength wrought Al alloy has typically been unsuitable for AM due to its particular solidification characteristics such as hot cracking, porosity and columnar grain growth.

Design/methodology/approach

In this research work, samples were fabricated using L-PBF under various laser energy densities by varying laser power and scan speed. The microstructural features that developed during the solidification are correlated with operating laser parameters. In addition, finite element modelling (FEM) was performed to understand the experimentally observed results.

Findings

Microstructure evolution and defect formation have been assessed, quantified and correlated with operating laser parameters. Thermal behaviour of samples was predicted using FEM to support experimental observations. An optimised combination of intermediate laser power and scan speed produced the least defects. Higher energy density increased hot tearing along the columnar grain boundaries, while lower energy density promoted void formation. From the quantitative results, it is evident that with increasing energy density, both the top surface and side wall roughness initially reduced till a minimum and then increased. Hardness and compressive strength were found to decrease with increasing power density due to stress relaxation from hot tearing.

Originality/value

This research work examined how L-PBF processing conditions influence the microstructure, defects, surface roughness and mechanical properties. The results indicates that complete elimination of solidification cracks can be only achieved by combining process optimisation and possible grain refining strategies.

Article
Publication date: 10 November 2023

Wensheng Li, Yiding Zhang, Yanwei Xu, Guangming Jiao, Dunwen Zuo, Wenting Lu, Quanshi Cheng, Jiaqi Yu and Yajun Chen

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Abstract

Purpose

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Design/methodology/approach

The Al coatings with different layer structures were prepared on TC4 by middle-frequency and direct-current combined magnetron sputtering. The cross-sectional morphology and surface roughness of coatings were characterized by scanning electron microscope and atomic force microscope. The corrosion resistance was evaluated by electrochemical method. The monolayer coating was post-treated by Alodine chemical conversion, Ar+ bombardment and a combination of two methods above.

Findings

The results show that the interfaces in bilayer and trilayer coatings reduce the defects. Ar+ bombardment reduces the corrosion current density, and Alodine chemical conversion leads to a higher pitting corrosion potential. The combined post-treatment has the highest polarization resistance.

Originality/value

The corrosion resistance of the Al coating is enhanced as the layer quantity increases. The combination of two post-treatments, Ar+ bombardment and Alodine chemical conversion, could achieve an overall improvement in corrosion resistance of Al coating.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 January 2018

Peng Yao, Xiaoyan Li, Fengyang Jin and Yang Li

This paper aims to analyze the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging.

Abstract

Purpose

This paper aims to analyze the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging.

Design/methodology/approach

Because of the infeasibility of analyzing the morphology transformation intuitively, a novel equivalent method is used. The morphology transformation on the Cu3Sn grains, during the formation of full Cu3Sn solder joints, is regarded as equivalent to the morphology transformation on the Cu3Sn grains derived from the Cu/Sn structures with different Sn thickness.

Findings

During soldering, the Cu3Sn grains first grew in the fine equiaxial shape in a ripening process until the critical size. Under the critical size, the Cu3Sn grains were changed from the equiaxial shape to the columnar shape. Moreover, the columnar Cu3Sn grains could be divided into different clusters with different growth directions. With the proceeding of soldering, the columnar Cu3Sn grains continued to grow in a feather of the width growing at a greater extent than the length. With the growth of the columnar Cu3Sn grains, adjacent Cu3Sn grains, within each cluster, merged with each other. Next, the merged columnar Cu3Sn grains, within each cluster, continued to merge with each other. Finally, the columnar Cu3Sn grains, within each cluster, merged into one coarse columnar Cu3Sn grain with the formation of full Cu3Sn solder joints. The detailed mechanism, for the very interesting morphology transformation, has been proposed.

Originality/value

Few researchers focused on the morphology transformation of interfacial phases during the formation of full intermetallic compounds joints. To bridge the research gap, the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints has been studied for the first time.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2005

Jian Gao, Janet Folkes, Oguzhan Yilmaz and Nabil Gindy

The aim of the paper is to provide an economically viable solution for the blade repair process. There is a continual increase in the repair market, which requires an increased…

2704

Abstract

Purpose

The aim of the paper is to provide an economically viable solution for the blade repair process. There is a continual increase in the repair market, which requires an increased level of specialised technology to reduce the repair cost and to increase productivity of the process.Design/methodology/approach – This paper introduces the aerospace component defects to be repaired. Current repair technologies including building‐up and machining technology are reviewed. Through the analysis of these available technologies, this paper proposes an integrated repair strategy through information integration and processes concentration.Findings – Provides detailed description and discussion for the repair system, including 3D digitising system, repair inspection, reverse engineering‐based polygonal modelling, and adaptive laser cladding and adaptive machining process.Originality/value – This paper describes a 3D non‐contact measurement‐based repair integration system, and provides a solution to create an individual blade‐oriented nominal model to achieve adaptive repair process (laser cladding/machining) and automated inspection.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 260