Search results

1 – 10 of 43
Article
Publication date: 3 September 2019

Kangxin Chen and Houfa Shen

The purpose of this paper is to simulate two macrosegregation benchmarks with a newly developed stabilized finite element algorithm based on a semi-implicit pressure correction…

Abstract

Purpose

The purpose of this paper is to simulate two macrosegregation benchmarks with a newly developed stabilized finite element algorithm based on a semi-implicit pressure correction scheme.

Design/methodology/approach

A streamline-upwind/Petrov–Galerkin (SUPG) stabilized finite element algorithm is developed for the coupled conservation equations of mass, momentum, energy and species. A semi-implicit pressure correction method combined with SUPG stabilization technique is proposed to solve the convection flow during solidification. An analytically derived enthalpy method is adopted to solve the energy conservation equation. The nonlinearities of the energy and species equations are tackled by Newton–Raphson method. Two macrosegregation benchmarks considering the solidification of an Al-4.5 per cent Cu alloy and a Sn-10 per cent Pb alloy are simulated.

Findings

A very good agreement is achieved by comparison with the classical finite volume method and a novel meshless method for the Al-4.5 per cent Cu alloy solidification benchmark. Moreover, a unique reference numerical solution has been obtained. Besides, it is demonstrated that the stabilized finite element algorithm can capture the flow instability and channel segregation during solidification of the Sn-10 per cent Pb alloy.

Originality/value

A semi-implicit pressure correction method combined with SUPG stabilization technique is adopted to develop robust stabilized finite element algorithm for the macrosegregation model. A new enthalpy formulation for heat transfer problems with phase change is derived analytically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2010

Mohamed Rady, Eric Arquis, Dominique Gobin and Benoît Goyeau

This paper aims to tackle the problem of thermo‐solutal convection and macrosegregation during ingot solidification of metal alloys. Complex flow structures associated with the…

Abstract

Purpose

This paper aims to tackle the problem of thermo‐solutal convection and macrosegregation during ingot solidification of metal alloys. Complex flow structures associated with the development of channels segregate and sharp gradients in the solutal field call for the implementation of accurate methods for numerical modeling of alloy solidification. In particular, the solute transport equation is convection dominated and requires special non‐oscillarity type high‐order schemes to handle the regions of channels segregates.

Design/methodology/approach

In the present study, a time‐splitting approach has been adopted to separately handle solute advection and diffusion. This splitting technique allows the application of accurate total variation dimensioning (TVD) schemes for solution of solute advection. Applications of second‐order Lax‐Wendroff TVD SUPERBEE and fifth‐order weighted essentially non‐oscillatory (WENO) schemes are described in the present article. Classical numerical solution of solute transport using hybrid and central‐difference schemes are also employed for the purpose of comparisons. Numerical simulations for solidification of Pb‐18%Sn in a two‐dimensional rectangular cavity have been carried out using different numerical schemes.

Findings

Numerical results show the difficulty of obtaining grid‐independent solutions with respect to local details in the region of channels. Grid convergence patterns and numerical uncertainty are found to be dependent on the applied scheme. In general, the first‐order hybrid scheme is diffusive and under predicts the formation of channels. The second‐order central‐difference scheme brings about oscillations with possible non‐physical extremes of solute composition in the region of channel segregates due to sharp gradients in the solutal field. The results obtained using TVD and WENO schemes contain no oscillations and show an excellent capture of channels formation and resolution of the interface between solute‐rich and depleted bands. Different stages of channels formation are followed by analyzing thermo‐solutal convection and macrosegregation at different times during solidification.

Research limitations/implications

Accurate prediction of local variation in the solutal and flow fields in the channels regions requires grid refinement up to scales in the order of microscopic dendrite arm spacing. This imposes limitations in terms of large computational time and applicability of available macroscopic models based on classical volume‐averaging techniques.

Practical implications

The present study is very useful for numerical simulation of macrosegregation during ingot casting of metal alloys.

Originality/value

The paper provides the methodology and application of TVD schemes to predict channel segregates during columnar solidification of metal alloys. It also demonstrates the limitations of classical schemes for simulation of alloy solidification.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2007

Z.Q. Han, R.W. Lewis and B.C. Liu

The motivation for this work is to establish a model that not only includes the main factors resulting in macrosegregation but also retains simplicity and consistency for the sake…

Abstract

Purpose

The motivation for this work is to establish a model that not only includes the main factors resulting in macrosegregation but also retains simplicity and consistency for the sake of potential application in casting practice.

Design/methodology/approach

A mathematical model for the numerical simulation of thermosolutal convection and macrosegregation in the solidification of multicomponent alloys is developed, in which the coupled macroscopic mass, momentum, energy and species conservation equations are solved. The conservation equations are discretized by using the control volume‐based finite difference method, in which an up‐wind scheme is adopted to deal with the convection term. The alternative direction implicit procedure and a line‐by‐line solver, based on the tri‐diagonal matrix algorithm, are employed to iteratively solve the algebraic equations. The velocity‐pressure coupling is handled by using the SIMPLE algorithm.

Findings

Based on the present study, the liquid flow near the dendritic front is believed to play an important role in large‐scale transport of the solute species. The numerical or experimental results in the literatures on the formation of channel segregation, especially those about the location of the initial flow as well as the morphology of the liquidus front, are well supported by the present investigation.

Research limitations/implications

The modelling is limited to dealing with the thermosolutal convection of two‐dimensional cases. More complicated phenomena (e.g. crystal movement) and 3D geometry should be considered in future research.

Practical implications

The present model can be used to analyze the effects of process parameters on macrosegregation and, with further development, could be applied as a useful tool in casting practice.

Originality/value

The numerical simulation demonstrates the capability of the model to simulate the thermosolutal convection and macrosegregation in alloy solidification. It also shows that the present model has good application potential in the prediction and control of channel segregation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Igor Vušanović and Vaughan R Voller

When a multi component alloy solidifies the redistribution of solute components leads to the formation of macrosegregation patterns. Blending ideas from a number of recent…

Abstract

Purpose

When a multi component alloy solidifies the redistribution of solute components leads to the formation of macrosegregation patterns. Blending ideas from a number of recent publications the purpose of this paper is to provide a “best practice” on how grid convergence of a given macrosegregation simulation can be measured and determined.

Design/methodology/approach

The best practice is arrived at by considering a benchmark problem consisting of a 2D-casting simulation of an idealized Al-4.5%Cu alloy in a side cooled square (76×76 mm) cavity. The model for this simulation is based on a mixture treatment of the relevant heat and mass transfer equations. Simulations are made using three increasingly refined grid sizes.

Findings

The best practice to determine grid resolution involves two steps: first, a visual evaluation of predicted segregation images leading to the evaluation of solute profiles along selected transects; and second, the construction of a cumulative distribution function (CDF) of the predicted segregation field. On application to the benchmark problem, it is concluded that current computer resources are insufficient to grid resolve macrosegregation patterns but that the CDF provides a useful signal of the nature of macrosegregation in a given system.

Research limitations/implications

The benchmark is chosen to be representative. Exact convergence behavior, however, may depend on the system chosen.

Originality/value

In addition to establishing a best practice for measuring grid resolution of macrosegregation simulations the work also highlights, even in the absence of complete grid convergence, how the recently proposed CDF treatment can inform solidification modeling and process understanding.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Vanja Hatić, Boštjan Mavrič and Božidar Šarler

The purpose of this paper is to simulate a macrosegregation solidification benchmark by a meshless diffuse approximate method. The benchmark represents solidification of Al 4.5 wt…

Abstract

Purpose

The purpose of this paper is to simulate a macrosegregation solidification benchmark by a meshless diffuse approximate method. The benchmark represents solidification of Al 4.5 wt per cent Cu alloy in a 2D rectangular cavity, cooled at vertical boundaries.

Design/methodology/approach

A coupled set of mass, momentum, energy and species equations for columnar solidification is considered. The phase fractions are determined from the lever solidification rule. The meshless diffuse approximate method is structured by weighted least squares method with the second-order monomials for trial functions and Gaussian weight functions. The spatial localization is made by overlapping 13-point subdomains. The time-stepping is performed in an explicit way. The pressure-velocity coupling is performed by the fractional step method. The convection stability is achieved by upstream displacement of the weight function and the evaluation point of the convective operators.

Findings

The results show a very good agreement with the classical finite volume method and the meshless local radial basis function collocation method. The simulations are performed on uniform and non-uniform node arrangements and it is shown that the effect of non-uniformity of the node distribution on the final segregation pattern is almost negligible.

Originality/value

The application of the meshless diffuse approximate method to simulation of macrosegregation is performed for the first time. An adaptive upwind scheme is successfully applied to the diffuse approximate method for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab…

228

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2009

Q. Du, D.G. Eskin and L. Katgerman

The purpose of this paper is to investigate the ways to diminish or eliminate numerical diffusion and dispersion. Numerical dispersion and diffusion are present in the predicted…

Abstract

Purpose

The purpose of this paper is to investigate the ways to diminish or eliminate numerical diffusion and dispersion. Numerical dispersion and diffusion are present in the predicted macrosegregation profiles reported in the literature and they hinder the interpretation of the simulation results. With the motivation to eliminate these numerical problems by employing appropriate meshes, simulations of macrosegregation in a billet direct‐chill cast from a multi‐component aluminium alloy has been performed.

Design/methodology/approach

First the idea that numerical dispersion could be alleviated by refining the structured mesh size is tested and the extent of this mesh refining to overcome these numerical problems is discussed. Second the link of numerical dispersion and diffusion to the type of mesh used is investigated.

Findings

Unstructured mesh eliminates the numerical dispersion present in the structured mesh while it introduces the numerical diffusion. It is concluded by performing calculations with the same settings but different meshes that, although refining the structured mesh could alleviate the numerical oscillation, it increases the computation time dramatically. Therefore the best solution to overcome these numerical problems is the employment of a hybrid mesh consisting of both structured and unstructured mesh.

Originality/value

This work reveals the reasons behind the numerical dispersion and diffusion in macrosegregation modelling and gives a practical solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2008

Miha Založnik, Shihe Xin and Božidar Šarler

This paper aims to point out the critical problems in numerical verification of solidification simulation codes and the complexity of the verification and to propose and apply a…

Abstract

Purpose

This paper aims to point out the critical problems in numerical verification of solidification simulation codes and the complexity of the verification and to propose and apply a procedure of generalized verification for macrosegregation simulation.

Design/methodology/approach

A partial verification of a finite‐volume computational model of macrosegregation in direct chill (DC) casting of binary aluminum alloys, including the coupled transport phenomena of heat transfer, fluid flow and species transport, is performed. The verification procedure is conducted on numerical test problems, defined as subproblems with respect to the complexity of the physical model, geometry, and boundary conditions. The studied cases are thermal convection with solidification in DC casting, thermal natural convection of a low‐Prandtl‐number liquid metal in a rectangular cavity and 1D directional solidification of a binary Al‐Cu alloy. Grid‐convergence studies, code comparison with an alternative Chebyshev‐collocation method, and comparison with a reference similarity solution are used for verification.

Findings

An excellent ability of the model to accurately resolve the thermal convection in the pertinent range of Prandtl and Rayleigh numbers is shown. Concerns regarding the solution of species transport in the mushy zone remain.

Research limitations/implications

The proposed verification procedure is not completed in its entirety. Further verification of the solutal and thermosolutal convection problems is required.

Originality/value

This paper proposes verification techniques for complex coupled solidification problems involving significant convection in the melt.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

Sailei Zhang, Jeffrey Yanke, David R. Johnson and Matthew J.M. Krane

A single-domain multi-phase model is developed for macrosegregation and shrinkage pipe formation in castings, as functions of buoyancy- and shrinkage-induced flow. The paper aims…

Abstract

Purpose

A single-domain multi-phase model is developed for macrosegregation and shrinkage pipe formation in castings, as functions of buoyancy- and shrinkage-induced flow. The paper aims to discuss these issues.

Design/methodology/approach

Using a volume of fluid (VOF) method, both the air/liquid and air/solid interfaces are tracked during shrinkage pipe formation. A set of mixture advection-diffusion equations are derived and solved for velocity, temperature, composition, and phase field evolution. The fluid mechanics of the model are verified using a transient ditch drainage problem.

Findings

Results showing the interaction of macrosegregation and pipe formation are presented for two alloys under faster and slower cooling conditions.

Originality/value

This model provides a comprehensive tool to investigate relationships between the developing composition distribution and shrinkage pipe formation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 July 2019

Mirosław Seredyński and Jerzy Banaszek

Proper selection of the stability parameter determines the accuracy of dendrite tip kinetics at a single crystal scale. Recently developed sophisticated phase field modelling of a…

Abstract

Purpose

Proper selection of the stability parameter determines the accuracy of dendrite tip kinetics at a single crystal scale. Recently developed sophisticated phase field modelling of a single grain evolution provides evidence that this parameter is not constant during the process. Nevertheless, in the commonly used micro-macroscopic simulations of alloy solidification, it is a common practice to use a constant value of the stability parameter, resulting from the marginal stability theory. This paper aims to address the issue of how this inaccuracy in modelling crystal growth kinetics can influence numerically predicted zones of columnar and equiaxed dendrites and the macro-segregation formation.

Design/methodology/approach

Using the original authors’ micro-macroscopic computer simulation model of binary alloy solidification, the calculations have been performed for the Kurz-Giovanola-Trivedi (KGT) crystal growth kinetics with two different values of the stability parameter, and for two different compositions of Al-Cu alloys. The computational model is based on single domain-based formulation of transport equations, which are discretized on control-volume mesh. To identify zones of different grain structures, developing within the two-phase liquid-solid region, an envelope of columnar dendrite tips is tracked on a fixed non-orthogonal, triangular control volume grid. The models of porous and slurry media are used, along with the concept of the switching function, to account for diverse flow resistances in the columnar and equiaxed crystal zones. The numerical predictions are carefully studied to address the question of how the chosen stability parameter influences macroscopic structures of a cast, the most important issue from the engineering point of view.

Findings

The carried-out comprehensive numerical analysis shows that the value of the stability parameter of the KGT-constrained dendrite growth model does not have a direct significant impact on the macrosegregation formation. It, however, visibly influences the undercooling along the front, separating different dendritic structures and the size of the undercooled melt region where the equiaxed grains can develop. It also affects the amount of eutectic phase created.

Originality/value

To the best of the authors’ knowledge, this is the first attempt at estimating the influence of some inaccuracies, caused by possible ambiguities in choosing the stability constant of the KGT law, on numerically predicted macroscopic fields of solute concentration, the developing zones of columnar and equiaxed crystals and the macrosegregation patterns.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 43