Search results

1 – 10 of 28
Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 14 March 2024

Liang Hu, Chengwei Liu, Rui Su and Weiting Liu

In a coaxial ultrasonic flow sensor (UFS), wall thickness is a vital parameter of the measurement tube, especially those with small inner diameters. The paper aims to investigate…

Abstract

Purpose

In a coaxial ultrasonic flow sensor (UFS), wall thickness is a vital parameter of the measurement tube, especially those with small inner diameters. The paper aims to investigate the influence of wall thickness on the transient signal characteristics in an UFS.

Design/methodology/approach

First, the problem was researched experimentally using a series of measurement tubes with different wall thicknesses. Second, a finite element method–based model in the time domain was established to validate the experimental results and further discussion. Finally, the plane wave assumption and oblique incident theory were used to analyze the wave propagation in the tube, and an idea of wave packet superposition was proposed to reveal the mechanism of the influence of wall thickness.

Findings

Both experimental and simulated results showed that the signal amplitude decreased periodically as the wall thickness increased, and the corresponding waveform varied dramatically. Based on the analysis of wave propagation in the measurement tube, a formula concerning the phase difference between wave packets was derived to characterize the signal variation.

Originality/value

This paper provides a new and explicit explanation of the influence of wall thickness on the transient signal in a co-axial UFS. Both experimental and simulated results were presented, and the mechanism was clearly described.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 April 2024

Mohammed Messadi, Larbi Hadjout and Noureddine Takorabet

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D…

Abstract

Purpose

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D curvature effects, and the field reaction due to the induced currents.

Design/methodology/approach

The analytical model is developed by combining two formulations. A magnetic scalar potential formulation in the air and the magnets regions and a current density formulation in the conductive region. The magnetic field and eddy currents expressions are obtained by solving the 3D Maxwell equations in 3D cylindrical coordinates with the variable separation method. The torque expression is derived from the field solution using the Maxwell stress tensor. In addition to 3D magnetic edge effects, the proposed model takes into account the reaction field effect due to the induced currents in the conducting part. To show the accuracy of the developed 3D analytical model, its results are compared to those from the 3D finite element simulation.

Findings

The obtained results prove the accuracy of the new developed 3D analytical model. The comparison of the 3D analytical model with the 2D simulation proves the strong magnetic edge effects impact (in the axial direction) in these devices which must be considered in the modelling. The new analytical model allows the magnetic edge effects consideration without any correction factor and also presents a good compromise between precision and computation time.

Practical implications

The proposed 3D analytical model presents a considerably reduced computation time compared to 3D finite element simulation which makes it efficient as an accurate design and optimization tool for radial flux eddy current devices.

Originality/value

A new analytical model in 3D cylindrical coordinates has been developed to find the electromagnetic torque in radial flux eddy current couplers. This model considers the magnetic edge effects, the 3D curvature effects and the field reaction (without correction factors) while improving the computation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2024

Suvranshu Pattanayak, Susanta Kumar Sahoo, Ananda Kumar Sahoo, Raviteja Vinjamuri and Pushpendra Kumar Dwivedi

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc…

Abstract

Purpose

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc attachment, and the system’s arc is ignited between tungsten electrode and filler wire.

Design/methodology/approach

The effect of various deposition conditions (welding voltage, travel speed and wire feed speed [WFS]) on bead characteristics is studied through response surface methodology (RSM). Under optimum deposition condition, a single-bead and thin-layered part is fabricated and subjected to microstructural, tensile testing and X-ray diffraction study. Moreover, bulk texture analysis has been carried out to illustrate the effect of thermal cycles and tensile-induced deformations on fibre texture evolutions.

Findings

RSM illustrates WFS as a crucial deposition parameter that suitably monitors bead width, height, penetration depth, dilution, contact angle and microhardness. The ferritic (acicular and polygonal) and lath bainitic microstructure is transformed into ferrite and pearlitic micrographs with increasing deposition layers. It is attributed to a reduced cooling rate with increased depositions. Mechanical testing exhibits high tensile strength and ductility, which is primarily due to compressive residual stress and lattice strain development. In deposits, ϒ-fibre evolution is more resilient due to the continuous recrystallisation process after each successive deposition. Tensile-induced deformation mostly favours ζ and ε-fibre development due to high strain accumulations.

Originality/value

This modified electrode arrangement in NTA-WAM suitably reduces spatter and bead height deviation. Low penetration depth and dilution denote a reduction in heat input that enhances the cooling rate.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 28