Search results

1 – 10 of over 31000
Article
Publication date: 3 August 2015

Ribeka Takahashi, David T. Fullwood, Travis M. Rampton, Darrell J. Skousen, Brent L. Adams and Christopher A. Mattson

Microstructure-sensitive design (MSD), for optimal performance of engineering components that are sensitive to material anisotropy, has largely been confined to the realm of…

Abstract

Purpose

Microstructure-sensitive design (MSD), for optimal performance of engineering components that are sensitive to material anisotropy, has largely been confined to the realm of theory. The purpose of this paper is to insert the MSD framework into a finite element environment in order to arrive at a practical tool for improved selection and design of materials for critical engineering situations.

Design/methodology/approach

This study applies the recently developed Hybrid Bishop-Hill (HBH) model to map the yield surface of anisotropic oxygen free electronic copper. Combining this information with the detailed local stresses determined via finite element analysis (FEA), a “configurational yield stress” is determined for the entire component. By varying the material choice/processing conditions and selecting the directionality of anisotropy, an optimal configuration is found.

Findings

The paper provides a new FEA-based framework for MSD for yield-limited situations. The approach identified optimal directionality and processing configurations for three engineering situations that are particularly sensitive to material anisotropy.

Research limitations/implications

The microstructure design space for this study is limited to a selection of eight copper materials produced by a range of processing methods, but is generalizable to many materials that exhibit anisotropic behavior.

Originality/value

The introduction of MSD methodology into a finite element environment is a first step toward a comprehensive designer toolkit for exploiting the anisotropy of general materials (such as metals) in a way that is routinely undertaken in the world of fiber-based composite materials. While the gains are not as sizeable (due to the less-extreme anisotropy), in many applications they may be extremely important.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 May 2021

Supphachai Nathaphan and Worrasid Trutassanawin

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM…

Abstract

Purpose

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) technology on both the dimensional accuracy and the compressive yield stress. Another purpose is to determine the optimum process parameters to achieve the maximum compressive yield stress and dimensional accuracy at the same time.

Design/methodology/approach

The standard cylindrical specimens which produced from ABS by using an FDM 3D printer were measured dimensions and tested compressive yield stresses. The effects of six process parameters on the dimensional accuracy and compressive yield stress were investigated by separating the printing orientations into horizontal and vertical orientations before controlling five factors: nozzle temperature, bed temperature, number of shells, layer height and printing speed. After that, the optimum process parameters were determined to accomplish the maximum compressive yield stress and dimensional accuracy simultaneously.

Findings

The maximum compressive properties were achieved when layer height, printing speed and number of shells were maintained at the lowest possible values. The bed temperature should be maintained 109°C and 120°C above the glass transition temperature for horizontal and vertical orientations, respectively.

Practical implications

The optimum process parameters should result in better FDM parts with the higher dimensional accuracy and compressive yield stress, as well as minimal post-processing and finishing techniques.

Originality/value

The important process parameters were prioritized as follows: printing orientation, layer height, printing speed, nozzle temperature and bed temperature. However, the number of shells was insignificant to the compressive property and dimensional accuracy. Nozzle temperature, bed temperature and number of shells were three significant process parameters effects on the dimensional accuracy, while layer height, printing speed and nozzle temperature were three important process parameters influencing compressive yield stress. The specimen fabricated in horizontal orientation supported higher compressive yield stress with wide processing ranges of nozzle and bed temperatures comparing to the vertical orientation with limited ranges.

Article
Publication date: 1 August 2000

Pankaj and Khalid Moin

Plane strain constitutive behaviour of von Mises and isotropic Hoffman materials is examined using single element tests. Two kinds of tests are conducted – (a) prescribed…

Abstract

Plane strain constitutive behaviour of von Mises and isotropic Hoffman materials is examined using single element tests. Two kinds of tests are conducted – (a) prescribed displacement tests; and (b) tests with a mixture of displacements and boundary tractions prescribed. While (a) are used to understand the manner of stress traversal on the yield surface in principal stress space, (b) are employed to study the load displacement response and the possibility of ensuing localization. Associated plasticity is assumed throughout. The tests are conducted using perfect and strain softening plasticity. It is found that for the von Mises criterion limited exact solutions can be evolved even under softening (or hardening) conditions. For isotropic Hoffman materials the nature of the stress traversal, load deflection response and the satisfaction of the localization conditions are strongly influenced by the ratio and difference of uniaxial yield strengths, in tension and compression, as well as by the softening parameters.

Details

Engineering Computations, vol. 17 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Xuepeng Zhan, Jianjun Wu, Mingzhi Wang, Yu Hui, Hongfei Wu, Qi Shang and Ruichao Guo

This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified…

Abstract

Purpose

This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified from indentation simulations following different yield criterions (Hill48, Yld91, Yld2004) to discover laws. It also aims to compare the difference in plastic anisotropy identified from indentation on three yield criterions and evaluate the applicability of plastic anisotropy.

Design/methodology/approach

This paper uses indentation simulations on different yield criterions to identify plastic anisotropy. First, the trust-region techniques based on the nonlinear least-squares method are used to determine anisotropy coefficients of Yld91 and Yld2004. Then, Yld91 and Yld2004 are implemented into ABAQUS software using user-defined material (UMAT) subroutines with the proposed universal structure. Finally, through considering comprehensively the key factors, the locations of the optimal data acquisition points in indentation simulations on different yield criterions are determined. And, the identified stress–strain curves are compared with experimental data.

Findings

This paper discovers that indentation on Yld2004 is able to fully identify difference in equivalent plastic strain between 0° and 90° directions when indentation depth ht is relatively smaller. And, this research demonstrates conclusively that plastic anisotropy identified from indentation on Yld2004 and Yld91 is more applicable at larger strains than that on Hill48, and that on Yld2004 is more applicable than that on Yld91, overall. In addition, the method on the determination of the locations of the optimal data acquisition points is demonstrated to be also valid for anisotropic material.

Originality/value

This paper first investigates plastic anisotropic properties and laws identified from indentation simulations following more advanced anisotropic yield criterions and provides reference for later research.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1984

J.M.M.C. Marques

Stress computation in finite element materially non‐linear analysis is an important problem that has perhaps been receiving less attention than it deserves. Not only does it…

Abstract

Stress computation in finite element materially non‐linear analysis is an important problem that has perhaps been receiving less attention than it deserves. Not only does it consume a significant share of total computer time, but also inaccuracies and ‘savings’ thereupon may well jeopardize the gains aimed at by sophisticating elsewhere the numerical strategy. A well established algorithm for stress computation is reviewed in detail, illustrating a number of computational hazards and proposing simple solutions.

Details

Engineering Computations, vol. 1 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 August 1960

E.W. Parkes

A very simple redundant structure is subjected to temperature cycling, primarily to determine the influence of the yield stress/temperature relation on its behaviour: the range…

Abstract

A very simple redundant structure is subjected to temperature cycling, primarily to determine the influence of the yield stress/temperature relation on its behaviour: the range and periodic time of the temperature cycle are included as subsidiary variables. It is found that improving the strength of the material at elevated temperatures may have the undesirable effect of hastening incremental collapse of the structure, and that the most rapid incremental collapse is not necessarily associated with maximum values for the range and periodic time of the temperature cycle. It is also found that the common assumption that the strength of the material is independent of temperature may in some circumstances be ambiguous, since there may be a sudden discontinuity in behaviour between a structure made from a material having a slight negative strength/temperature gradient and one made from a material having a slight positive gradient.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1988

A. Gens and D.M. Potts

Elasto‐plastic models based on critical state formulations have been successful in describing many of the most important features of the mechanical behaviour of soils. This review…

1002

Abstract

Elasto‐plastic models based on critical state formulations have been successful in describing many of the most important features of the mechanical behaviour of soils. This review paper deals with the applications of this class of models to the numerical analysis of geotechnical problems. After a brief overview of the development of the models, the basic critical state formulation is presented together with the main modifications which have actually been used in computational applications. The problems associated with the numerical implementation of this type of models are then discussed. Finally, a summary of reported computational applications and some specific examples of analyses of geotechnical problems using critical state models are presented.

Details

Engineering Computations, vol. 5 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 October 2023

Mohammad Saeid Aghighi, Christel Metivier and Sajad Fakhri

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of…

Abstract

Purpose

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of viscoplastic fluids in cavities and, if so, under what conditions.

Design/methodology/approach

The wall slip was evaluated using a model created for viscoplastic (Bingham) fluids. The coupled conservation equations were solved numerically using the finite element method. Simulations were performed for various parameters: the Rayleigh number, yield number, slip yield number and friction number.

Findings

Wall slip determines two essential yield stresses: a specific yield stress value beyond which wall slippage is impossible (S_Yc); and a maximum yield stress beyond which convective flow is impossible (Y_c). At low Rayleigh numbers, Y_c is smaller than S_Yc. Hence, the flow attained a stable (conduction) condition before achieving the no-slip condition. However, for more significant Rayleigh numbers Y_c exceeded S_Yc. Thus, the flow will slip at low yield numbers while remaining no-slip at high yield numbers. The possibility of slipping on the wall increases the buoyancy force, facilitating the onset of Rayleigh–Bénard convection.

Originality/value

An essential aspect of this study lies in its comprehensive examination of the effect of slippage on the natural convection flow of viscoplastic materials within a cavity, which has not been previously investigated. This research contributes to a new understanding of the viscoplastic fluid behavior resulting from slipping.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 31000