Search results

1 – 10 of 389
Article
Publication date: 1 August 1998

Esa Kemppinen, Petri Mikkonen, Paul E. Collander and Seppo Leppävuori

Attenuation characteristics of microstrip transmission lines on alumina substrates up to 50GHz are discussed. The lines under test came from three different manufacturers, each of…

257

Abstract

Attenuation characteristics of microstrip transmission lines on alumina substrates up to 50GHz are discussed. The lines under test came from three different manufacturers, each of whom used different processes to realise the transmission lines. Two of the manufacturers used silver (Ag) paste, whereas the process of one of the manufacturers was copper (Cu) based. Each manufacturer used identical alumina substrates and identical test pattern files so that the measured attenuation properties reflected manufacturer’s capability to fabricate microstrips and the quality of the metal system used. Measurements showed that the attenuation of copper microstrips was slightly lower than that of the silver microstrips, but the difference was small. Measured attenuation (S21) of about 50Ω microstrips was approximately 0.5db/cm at 30GHz and 0.8dB/cm at 50GHz, respectively. The loss coefficient, αt, of about 0.035dB/mm at 40GHz was obtained for the Cu microstrips. Such an attenuation is reasonable for many practical applications in the microwave and millimetre wave regions.

Details

Microelectronics International, vol. 15 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 December 2022

Yokesh V., Gulam Nabi Alsath and Malathi Kanagasabai

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk…

Abstract

Purpose

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) between the microstrip transmission lines in a printed circuit board.

Design/methodology/approach

The proposed DMS evolved with the combination of spur line (L-shaped DMS) and U-shaped DMS topologies. This technique reduces the strength of electromagnetic coupling and suppresses crosstalk by optimizing the capacitive and inductive coupling ratio between the linked microstrip lines. The practical inductance value is much more significant in DMS than in defected ground structures (DGS), but the capacitance value remains the same.

Findings

A DMS unit is etched on the aggressor microstrip line instead of the DGS circuit. Because there is no leakage via the ground plane and the circuit size is far smaller than with DGS, the enclosure issue is disregarded. DMS structures have a larger effective inductance and are resistant to electromagnetic interference. A tightly coupled transmission line structure with minimal separation between the coupled microstrip line is designed using DMS. Further research must be conducted to improve the NEXT, FEXT and spacing between the transmission lines.

Originality/value

Simulation and actual measurement results show that the proposed DMS structure can effectively suppress crosstalk by analysing the S-parameters, namely, S_12, S_13 and S_14, with measured values of 1.48 dB, 20.65 dB and 21.099 dB, respectively. The data rate is measured to be 1.34 Gbps as per the eye diagram characterization. The results show that the NEXT and FEXT are reduced by approximately 20 dB in the frequency range of 1–11 GHz for mixed signals. The substantial measured results in the vector network analyser coincide with the computer simulation technology microwave studio suite simulation results.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 March 2010

Bo Gao and Ling Tong

The purpose of this paper is to present the research on the effect of the shielding box to the dispersion properties of the microstrip lines, obtained by both theory analysis and…

Abstract

Purpose

The purpose of this paper is to present the research on the effect of the shielding box to the dispersion properties of the microstrip lines, obtained by both theory analysis and the experimental test. Additionally, some principles about the effect of the shielding box are given, which could provide some useful information for the design of monolithic microwave integrated circuits.

Design/methodology/approach

The dispersion of the shielded microstrip line is analysis by the MOL. The measured data are obtained by using vector network analyzer and the calibration method is through, reflect, line. The structure of the test fixtures will also be illustrated in this paper.

Findings

The size of the shielding box has a great impact on the dispersion properties of the microstrip lines. The shielding box will lead to the decrease of the effective dielectric constant of the shielded microstrip lines. The effects of shielding box have a big relation to the ratio of the size of the shielding box to the size of the microstrip lines. When this ratio becomes bigger, the effects will decrease and can even be ignored completely.

Originality/value

This paper presents the effects of the shielding box on the dispersion properties of the microstrip lines. Both the measured results and the theory analysis are given in a wide‐frequency range and the structures of the test fixture are also illustrated in detail.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Manikandan Alagarsamy, Uma Maheswari Sangareswaran and P. Dhanaraj

The purpose of this paper is to discuss and analyze a microstrip feed equilateral triangular microstrip array antenna (ETMPAA) that is proposed for S band (3 GHz) applications.

Abstract

Purpose

The purpose of this paper is to discuss and analyze a microstrip feed equilateral triangular microstrip array antenna (ETMPAA) that is proposed for S band (3 GHz) applications.

Design/methodology/approach

The ETMPAA comprises three equilateral triangular patches with equal distance. The size of the antenna is 49.4 mm (0.0494 m)×18.4 mm (0.184 m). The proposed antenna has been designed by etching triangular shape structure on glass epoxy substrate (FR4).

Findings

The simulated result shows that ETMPAA has the impedance bandwidth of 900 MHz and the bandwidth can be achieved by controlling the gap between the patch antennas. The antenna is fed by microstrip feeding technique. Design of an antenna using advanced design system (ADS), based on finite element methods (FEM) has been used to analyze and optimize the antenna. Based on the measurement results an antenna proposed with maximum efficiency and maximum gain.

Originality/value

This paper fulfils an identified need to study a microstrip feed ETMPAA is proposed for S band (3 GHz) applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2018

Shouxu Wang, Xiaolan Xu, Guoyun Zhou, Yuanming Chen, Wei He, Wenjun Yang, Xinhong Su and Yongshuan Hu

As a common transmission line, the microstrip line plays an important role in high-speed circuits. The purpose of this paper was to investigate the effects of the circuit design…

217

Abstract

Purpose

As a common transmission line, the microstrip line plays an important role in high-speed circuits. The purpose of this paper was to investigate the effects of the circuit design of microstrip lines on the signal integrity (SI). In addition, the influence of the type and thickness of the solder resist ink on SI was analyzed to provide guidance for the related producing process design of printed circuit boards (PCBs).

Design/methodology/approach

Microstrip line properties consisting of shape, line-width/line-space ratio, reference layer design and as-covered solder resist ink were designed to measure the insertion loss (S21) in high-speed PCB.

Findings

The study showed that the insertion loss (S21) of straight, meander, snake-shaped and wavy microstrip lines was approximately consistent. A microstrip line with width/space ratio less than 0.96 is necessary, as the differential line closing produces a mutual interference. Reference layer including the discontinuous area should be repaired by adjusting the microstrip line parameters. With regard to the solder resist ink, the insertion loss of novel solder resist ink decreased by 0.163 dB/in at 12.9 GHz and 0.164 dB/in at 14 GHz, compared with traditional solder resist ink. Accordingly, the insertion loss effectively improved at a lower thickness of solder resist.

Originality/value

This paper demonstrated that the common designing factors of line shape, line/space ratio, reference layer and solder resist influence microstrip line SI in the significant reference of designer-making PCB layout.

Details

Circuit World, vol. 44 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 January 2020

Ramakrishna Guttula and Venkateswara Rao Nandanavanam

Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made…

Abstract

Purpose

Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made numerous achievements in several fields, some systems require additional improvements to meet few challenges. Yet, they require application-specific improvement for optimally designing microstrip patch antenna. The paper aims to discuss these issues.

Design/methodology/approach

This paper intends to adopt an advanced meta-heuristic search algorithm called as grey wolf optimization (GWO), which is said to be inspired by the hunting behaviour of grey wolves, for the design of patch antenna parameters. The searching for the optimal design of the antenna is paced up using the opposition-based solution search. Moreover, the proposed model derives a nonlinear objective model to aid the design of the solution space of antenna parameters. After executing the simulation model, this paper compares the performance of the proposed GWO-based microstrip patch antenna with several conventional models.

Findings

The gain of the proposed model is 27.05 per cent better than WOAD, 2.07 per cent better than AAD, 15.80 per cent better than GAD, 17.49 per cent better than PSAD and 3.77 per cent better than GWAD model. Thus, it has proved that the proposed antenna model has attained high gain, leads to cause superior performance.

Originality/value

This paper presents a technique for designing the microstrip patch antenna, using the proposed GWO algorithm. This is the first work utilizes GWO-based optimization for microstrip patch antenna.

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 11 May 2020

Rasime Uyguroğlu, Allaeldien Mohamed Hnesh, Muhammad Sohail and Abdullah Y. Oztoprak

This paper aims to introduce a new novel microstrip monopulse comparator system to reduce the spurious radiation from the comparator and the feed network for achieving better…

Abstract

Purpose

This paper aims to introduce a new novel microstrip monopulse comparator system to reduce the spurious radiation from the comparator and the feed network for achieving better radiation performance.

Design/methodology/approach

Two substrate layers have been used for the microstrip monopulse comparator system. The feed network and the comparator circuits are on the first substrate layer and the microstrip array antenna is on the second layer. The elements of the array antenna are novel square four-sided narrow rectangular slot antennas built on a conducting plane. A commercially available computational software, CST microwave studio, has been used for the analysis of the system.

Findings

Two substrate layers have been used for the microstrip monopulse comparator system. The feed network and the comparator circuits are on the first substrate layer and the microstrip array antenna is on the second layer. The elements of the array antenna are novel square four-sided narrow rectangular slot antennas built on a conducting plane. A commercially available computational software, CST microwave studio, has been used for the analysis of the system.

Practical implications

The system is proposed for tracking moving targets.

Originality/value

Novel slot radiators are introduced as radiating elements in this paper. The antenna arrangement shields the comparator and the feed network circuits, reducing the spurious radiation significantly.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 February 2020

Suresh Akkole and Vasudevan N.

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is…

Abstract

Purpose

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is becoming more attractive. This paper aims to propose a new type of EBG fractal square patch microstrip multi band fractal antenna structures that are designed and developed. Their performance parameters with and without EBG structures are investigated and minutely compared with respect to the resonance frequency, return loss, a gain of the antenna and voltage standing wave ratio.

Design/methodology/approach

The fractal antenna geometries are designed from the fundamental square patch and then EBG structures are introduced. The antenna geometry is optimized using IE3D simulation tool and fabricated on low cost glass epoxy FR4, with 1.6 mm height and dielectric materials constant of 4.4. The prototype is examined by means of the vector network analyzer and antenna patterns are tested on the anechoic chamber.

Findings

Combining the square fractal patch antenna with an application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz. Also, a decrease in antenna size of 34.84 and 59.02 per cent for the first and second iteration, respectively, is achieved for the antenna second and third without EBG. The experimental results agree with that of simulated values. The presented microstrip antenna finds uses in industrial, scientific and medical (ISM) band, Wi-Fi and C band. This antenna can also be used for satellite and radio detection and range devices for communication purposes.

Originality/value

A new type of EBG fractal square patch microstrip antenna structures are designed, developed and compared with and without EBG. Because of the application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz, which are useful for Wi-Fi, ISM and C band wireless communication.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 August 2016

Kornel Ruman, Alena Pietrikova, Pavol Galajda, Igor Vehec, Tibor Rovensky and Martin Kmec

The purpose of this paper is to introduce modified in–phase and quadrature components (IQ) demodulator based on low temperature co-fired ceramics (LTCC) dielectric substrate…

141

Abstract

Purpose

The purpose of this paper is to introduce modified in–phase and quadrature components (IQ) demodulator based on low temperature co-fired ceramics (LTCC) dielectric substrate GreenTape 951PX for M-Sequence ultra-wide band (UWB) sensor system.

Design/methodology/approach

Microstrip low pass (LP) and band pass (BP) filters for UWB sensor systems with required properties (for both filters, minimum attenuation is −40dB in stopband, bandwidth of pass band is 6 to 8.5 GHz for BP filter and cutoff frequency is 2.5 GHz for LP filter) were designed, simulated, fabricated and measured using dielectric substrates Du Pont GreenTape 951 PX. The developed microstrip filters were integrated with all parts of IQ demodulator on one multilayer structure based on LTCC substrate Du Pont GreenTape 951 PX.

Findings

Both type of microstrip filters integrated in the I Q demodulator achieved better transmission characteristics in comparison with commercial available filters. It was shown that LTCC technology based on GreenTape 951PX proves good stability in gigahertz frequency and suitability for fabrication of IQ demodulator with a multilayer approach.

Originality/value

The novelty of this work lies in substituting commercially available LP and BP filters used in I Q demodulator by microstrip LP and BP filters with better performance and furthermore the I Q demodulator is fabricated based on LTCC instead of previously used PCB.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 389