Search results

1 – 10 of 82
Article
Publication date: 9 September 2024

Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…

Abstract

Purpose

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.

Design/methodology/approach

This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.

Findings

An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.

Research limitations/implications

This review focuses primarily on the SLS AM process.

Originality/value

A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2024

Yitian Chi, Narayanan Murali and Xiaochun Li

High-performance wrought aluminum alloys, particularly AA6061, are pivotal in industries like automotive and aerospace due to their exceptional strength and good response to heat…

Abstract

Purpose

High-performance wrought aluminum alloys, particularly AA6061, are pivotal in industries like automotive and aerospace due to their exceptional strength and good response to heat treatments. Investment casting offers precision manufacturing for these alloys, because casting AA6061 poses challenges like hot cracking and severe shrinkage during solidification. This study aims to address these issues, enabling crack-free investment casting of AA6061, thereby unlocking the full potential of investment casting for high-performance aluminum alloy components.

Design/methodology/approach

Nanotechnology is used to enhance the investment casting process, incorporating a small volume fraction of nanoparticles into the alloy melt. The focus is on widely used aluminum alloy 6061, utilizing rapid investment casting (RIC) for both pure AA6061 and nanotechnology-enhanced AA6061. Microstructural characterization involved X-ray diffraction, optical microscopy, scanning electron microscopy, differential scanning calorimetry and energy dispersive X-ray spectroscopy. Mechanical properties were evaluated through microhardness and tensile testing.

Findings

The study reveals the success of nanotechnology-enabled investment casting in traditionally challenging wrought aluminum alloys like AA6061. Achieving crack-free casting, enhanced grain morphology and superior mechanical properties, because the nanoparticles control grain sizes and phase growth, overcoming traditional challenges associated with low cooling rates. This breakthrough underscores nanotechnology's transformative impact on the mechanical integrity and casting quality of high-performance aluminum alloys.

Originality/value

This research contributes originality and value by successfully addressing the struggles in investment casting AA6061. The novel nano-treating approach overcomes solidification defects, showcasing the potential of integrating nanotechnology into rapid investment casting. By mitigating challenges in casting high-performance aluminum alloys, this study paves the way for advancements in manufacturing crack-free, high-quality aluminum alloy components, emphasizing nanotechnology's transformative role in precision casting.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Zhuoyang Xin, Guanqi Zhu, Yun Chung Hsueh and Dan Luo

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric…

Abstract

Purpose

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric laterally, rendering it suitable for fabricating large-scale Stay-in-Place concrete formwork. This paper aims to investigate the control parameters and structure performance of ALM and assess its application for the fabrication of large-scale concrete formwork.

Design/methodology/approach

Based on previous feasibility studies, this research systematically investigates the control and material parameters that influence horizontal and vertical extrusion speeds, as well as the overall quality of ALM. Once the system parameters are established, a series of prototypes are fabricated and tested to validate the tensile strength of the formwork and its reinforcement capabilities. In addition, this study assesses the potential geometric freedom and implementation constraints of ALM.

Findings

This research identifies the essential control parameters for path planning in ALM and examines their impact on fabrication. In addition, this paper evaluates ALM’s strengths and limitations in producing concrete formwork for large-scale concrete structures, comparing these to industry benchmarks.

Originality/value

A critical challenge in additive manufacturing lies in its scalability and compatibility with existing construction processes. In comparison to concrete, FRP offers advantages such as being lighter, easier to handle and providing surface protection and reinforcement. These qualities make FRP superior for formwork and compatible with existing building standards. Despite its advantages and potential, the current path planning and control model in 3D printing do not apply to ALM due to its novel build-up process. Also, the performance of fabricated parts as part of integrated large-scale structures is yet to be studied.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2024

Kapildeo P. Yadav, Sudipta Ghosh, Sujata Rajak and Amiya K. Samanta

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during…

Abstract

Purpose

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during its production. Also, massive amount of natural aggregate is illegally mined, which poses serious environmental issues along with ecological misbalance. Researchers are in continuous search of appropriate substitutes to mitigate those challenges and develop innovative concrete mix. Consequently, depletion of natural resources, the disturbances to the environmental and ecological imbalance will reduce. The purpose of this study is to develop a Portland Slag Cement based novel sustainable concrete incorporating Alccofine and Recycled Refractory Brick as fractional replacement of cement and fine aggregate, respectively and evaluate its destructive, non-destructive and microstructural properties.

Design/methodology/approach

M25 grade of concrete adopting 0.45 water-binder proportion, with diverse percentage of Alccofine as fractional substitution of cement and 20% of recycled refractory brick (RRB) as fine aggregate, has been cast and evaluated for diverse mechanical strength following a curing of 7, 14 and 28 days. Scanning electron microscopic analysis has been carried out to study the microstructural changes in the specimens.

Findings

Supplementary use of Alccofine enhanced normal compressive strength of sustainable concrete mix blended with Portland Slag Cement by a large amount at all levels of 7, 14 and 28 days of curing. Test results indicated development of a favourable high-strength sustainable concrete mix by substituting cement with Alccofine.

Originality/value

This manuscript has demonstrated the possibility of developing sustainable concrete blends by incorporating Alccofine 1203 and RRB as partial replacement of Portland Slag Cement and natural fine aggregate, respectively. The strength and potential of concrete incorporating RRB for wider and special application in adverse environmental conditions having higher thermal gradient, as RRB is a valuable waste from high temperature kiln and furnaces. Alccofine 1203 has been included in the concrete mix as an alternative to Portland Slag Cement to improve the mechanical strength properties and durability of concrete intended for adverse environmental application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 September 2024

Nilesh Kumar and Jatinder Kumar

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear…

Abstract

Purpose

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear pattern in rough and trim-cut wire electric discharge machine (WEDM) of hybrid composite (Al6061-90%/SiC-2.5%/TiB2-7.5%).

Design/methodology/approach

Effects of four important factors, namely, rough-cut history (RCH), pulse on time (Ton), peak current (IP) and wire offset (WO) have been assessed on the responses of interest for trim-cut WEDM. Box–Behnken design (RSM) was used to formulate the experimentation plan. Quantitative indices of surface integrity, namely, SR and RL, and selected samples have been investigated for qualitative analysis, namely, surface topography, material migration and wire wear pattern.

Findings

Ton and IP are found to be most significant, whereas RCH and WO are found insignificant for SR. Ton and WO were found to be the most significant factors affecting RL. After trim cut, an RL of thickness 8.26 µm is observed if the initial rough cut has been accomplished at high discharge energy setting. Whereas the best value of RL thickness, i.e. 5.36 µm, can be realized with low level of RCH. A significant decrease in the presence of foreign materials is recorded, indicating its strong correlation with the discharge energy used during machining.

Originality/value

Investigation on surface integrity features for machining of hybrid composite through rough and trim-cut WEDM has been reported by only a limited number of researchers in the past. This study is attempted at fulfilling few vital gaps by addressing the issues such as evaluation of the efficacy of trim cutting under different discharge energy conditions (using RCH), analysis of wire wear pattern in both rough and trim-cut modes and investigation of the wire breakage phenomenon during machining.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 September 2024

Ashok Ashta and Peter Stokes

“Omotenashi” has become a buzzword denoting the Japanese ethic for excellence in customer care. However, while there is an emerging body of research on the spirit of the provider…

Abstract

Purpose

“Omotenashi” has become a buzzword denoting the Japanese ethic for excellence in customer care. However, while there is an emerging body of research on the spirit of the provider side, nevertheless, the customer care experiences from the beneficiary perspective – especially the dynamics that manifest when such care fails – remain undercommented. Thus, the purpose of this paper is to identify critical dynamics of how unexpected thorny disharmony might manifest in instances of customer care failure, with a focus on customer service and intercultural lived experiences. In doing so it challenges a prevailing and dominant view of flawless Japanese customer care – Omotenashi.

Design/methodology/approach

Drawing on a multi-disciplinary approach the current research proposes a conceptual model and uses autoethnography to offer insights at the individual level unit of analysis.

Findings

The findings break ground towards innovative understanding of customer care failure dynamics, by considering intercultural situations.

Research limitations/implications

By express design and paradigm, the research is limited to subjective interpretivism. The paper offers important implications for understanding customer beneficiary experience, especially to nuance and challenge the current hegemonic view of the positive nature of Japanese “Omotenashi” customer care in extant literature.

Practical implications

The findings have important practical implications for customer care managers. The paper aims to prompt a pause for thought, a warning of a drift towards organizational self-satisfaction and back slapping in relation to customer care and makes a call for a return to consider the holistic customer experience in the Japanese and inter-cultural contexts.

Social implications

It can be argued that there appears to be a tendency in some quarters to massage and manipulate broader society by pointing to the positive. However, marketing scholars are aware that raising customer expectations in this way can magnify backlash when disconfirmation occurs. This study lends support to the notion that there may be a need to temper expectations and hype in customer relation contexts. This is predicated on the observation that individual – and, therefore, beneficiary – experience is unique, that uniqueness may be accentuated in intercultural situations.

Originality/value

The paper nuances the general positively portrayed aspects of Omotenashi by curating insights into when care fails. It addresses the paucity of lived experience accounts of the beneficiary experience of Japanese Omotenashi care in intercultural situations.

Details

Journal of Asia Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 11 September 2024

Dongyang Cao, Daniel Bouzolin, Christopher Paniagua, Hongbing Lu and D.Todd Griffith

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced…

Abstract

Purpose

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced by additive manufacturing.

Design/methodology/approach

The authors first identified appropriate printing parameters for joining segmented short beams and then used those parameters to print and fusion-join segments with different configurations of stiffeners to form a longer section of a wing or small wind turbine blade structure.

Findings

It was found that the beams with three lateral and three base stiffening ribs give the highest flexural strength among the three beams investigated. Results on joined beams annealed at different conditions showed that annealing at 70 °C for 0.5 h yields higher performance than annealing at the same temperature for longer times. It is also found that in the case of the hot-plate-welded three-dimensional (3D)-printed structures, no annealing is needed for reaching a high strength-to-weight ratio, but annealing is helpful for maximizing the modulus-to-weight ratio. Both thermal buckling and edge wrapping were observed under annealing at 70°C for 0.5 h for 3D-printed beams comprising two lateral and four base stiffening plates.

Originality/value

Fusion-joining of additively manufactured segments is needed owing to the constraint in building volume of a typical commercial 3D-printer. However, study of the effect of process parameters is needed to quantify their effect on mechanical performance. This investigation has therefore identified key printing parameters and annealing conditions for fusion-joining short segments to form larger structures, from multiple 3D-printed sections, such as wind blade structures.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 September 2024

Indrajeet Katti, Alistair Jones, Matthias Weiss, Dong Qiu, Joy H. Forsmark and Mark Easton

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting…

Abstract

Purpose

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting (HPDC) prototypes. The purpose of this paper is to understand the similarities and differences in the microstructures and properties of PBF-LB and HPDC alloys.

Design/methodology/approach

PBF-LB AlSi10Mg and HPDC AlSi10Mn plates with different thicknesses were manufactured. Iso-thermal heat treatment was conducted on PBF-LB bending plates. A detailed meso-micro-nanostructure analysis was performed. Tensile, bending and microhardness tests were conducted on both alloys.

Findings

The PBF-LB skin was highly textured and softer than its core, opposite to what is observed in the HPDC alloy. Increasing sample thickness increased the bulk strength for the PBF-LB alloy, contrasting with the decrease for the HPDC alloy. In addition, the tolerance to fracture initiation during bending deformation is greater for the HPDC material, probably due to its stronger skin region.

Practical implications

This knowledge is crucial to understand how geometry of parts may affect the properties of PBF-LB components. In particular, understanding the role of geometry is important when using PBF-LB as a HPDC prototype.

Originality/value

This is the first comprehensive meso-micro-nanostructure comparison of both PBF-LB and HPDC alloys from the millimetre to nanometre scale reported to date that also considers variations in the skin versus core microstructure and mechanical properties.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2024

Ercan Emin Cihan and Özgür Kabak

This study aims to establish a robust evaluation framework for suppliers within the automotive supply chain, specifically in the stamping sector. The primary objectives are to…

74

Abstract

Purpose

This study aims to establish a robust evaluation framework for suppliers within the automotive supply chain, specifically in the stamping sector. The primary objectives are to elucidate the performance criteria of suppliers, identify indicators and scales for measuring these criteria and find the importance of the criteria.

Design/methodology/approach

The evaluation framework comprises a criteria hierarchy and indicators developed based on the evaluation criteria of major automotive manufacturers. Specific indicators and measurement scales are recommended for assessing suppliers. Importance weights for the criteria are assigned based on the input of nine experts using the Analytic Hierarchy Process (AHP). Finally, four sheet metal stamping tooling (SMST) suppliers are evaluated by four specialists using the proposed evaluation framework.

Findings

The study introduces a novel classification of criteria, encompassing financial and commercial perspectives, delivery capability, supplier facility and cultural approaches and business process necessities. The findings underscore the significance of financial and commercial stability in the selection of SMST suppliers, emphasizing their role in mitigating risks associated with disruptions, bankruptcies and unforeseen events. Additionally, several SMST evaluation factors identified in this study contribute to the development of resilience capabilities, highlighting the crucial importance of their inclusion and assessment in the proposed evaluation framework.

Originality/value

This research presents a comprehensive model for evaluating SMST suppliers, which tackles the multidisciplinary challenges within the automotive supply chain. Given the inadequacy or nonexistence of current SMTS selection models, this study bridges the gap by exploring potential and necessary criteria, alongside 116 specific indicators and measurement scales.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 22 August 2024

Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Saad Waqar, Natalia Szczotkarz, Govind Vashishtha, Mehmet Erdi Korkmaz and Grzegorz M. Krolczyk

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive…

Abstract

Purpose

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive. Even though they are widely used, current techniques of producing materials that are difficult to cut pose several problems from a financial, ecological and even health perspective. To handle these problems and acquire improved mechanical and structural qualities, laser powder bed fusion (LPBF) has been widely used as one of the most essential additive manufacturing techniques. The purpose of this article is to focus on the state of the art on LPBF parts of Inconel 625 and Inconel 718 for microstructure, mechanical behavior and postprocessing.

Design/methodology/approach

The mechanical behavior of LPBF-fabricated Inconel is described, including hardness, surface morphology and wear, as well as the influence of fabrication orientation on surface quality, biocompatibility and resultant mechanical properties, particularly tensile strength, fatigue performance and tribological behaviors.

Findings

The postprocessing techniques such as thermal treatments, polishing techniques for surface enhancement, mechanical and laser-induced peening and physical operations are summarized.

Originality/value

The highlighted topic presents the critical aspects of the advantages and challenges of the LPBF parts produced by Inconel 718 and 625, which can be a guideline for manufacturers and academia in practical applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last month (82)

Content type

Earlycite article (82)
1 – 10 of 82