Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of 74
To view the access options for this content please click here
Article
Publication date: 19 August 2019

Friction spot lap joining of the anodized aluminium alloy 6061 with high-density polyethylene sheets

Ghadanfer Hussein Ali and Sabah Khammass Hussein

The purpose of this paper is to join an anodized aluminium alloy AA6061 sheet with high-density polyethylene (HDPE) using friction spot process.

HTML
PDF (2.7 MB)

Abstract

Purpose

The purpose of this paper is to join an anodized aluminium alloy AA6061 sheet with high-density polyethylene (HDPE) using friction spot process.

Design/methodology/approach

The surface of AA6061 sheet was anodized to increase the pores’ size. A lap joint configuration was used to join the AA6061 with HDPE sheets by the friction spot process. The joining process was carried out using a rotating tool of different diameters: 14, 16 and 18 mm. Three tool-plunging depths were used – 0.1, 0.2 and 0.3 mm – with three values of the processing time – 20, 30 and 40 s. The joining process parameters were designed according to the Taguchi approach. Two sets of samples were joined: the as-received AA6061/HDPE and the anodized AA6061/HDPE.

Findings

Frictional heat melted the HDPE layers near the lap joint line and penetrated it through the surface pores of the AA6061 sheet via the applied pressure of the tool. The tool diameter exhibited higher effect on the joint strength than processing time and the tool-plunging depth. Specimens of highest and lowest tensile force were failed by necking the polymer side and shearing the polymer layers at the lap joint, respectively. Molten HDPE was mechanically interlocked into the pores of the anodized surface of AA6061 with an interface line of 18-m width.

Originality/value

For the first time, HDPE was joined with the anodized AA6061 by the friction spot process. The joint strength reached an ideal efficiency of 100 per cent.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/WJE-12-2018-0415
ISSN: 1708-5284

Keywords

  • Friction spot
  • AA6061
  • HDPE
  • Anodizes

To view the access options for this content please click here
Article
Publication date: 19 November 2018

Tribological behaviour and wear fashion of processed AA6061/ZrO2 composite

Johny James and Raja Annamalai A.

This study aims to develop a less weight high wear resistant material to fabricate brake components especially in automotive sector.

HTML
PDF (2 MB)

Abstract

Purpose

This study aims to develop a less weight high wear resistant material to fabricate brake components especially in automotive sector.

Design/methodology/approach

Effort was initiated to design and develop aluminium metal matrix composite by combining aluminium alloy AA6061 and zirconium oxide (ZrO2) with the help of stir casting coupled with squeeze casting unit. Morphology analysis of advanced composite has been carried out by optical microscopy and scanning electron microscopy (SEM). The hardness of composites having different compositions was tested using Vickers micro hardness tester. The tribological property of the developed three specimens having different composition has been tested using pin-on-disc wear test equipment under dry sliding conditions. To obtain better understanding of wear mechanism, SEM image of worn-out surface was captured and analysed. SEM images and the corresponding Energy-dispersive X-ray spectroscopy (EDX) on the wear surface were carried out.

Findings

The optical and SEM images evidenced the existence of ZrO2 particles along the metal matrix composite. Porosity values shows that the porosity level is acceptable as it falls below 7 per cent. Also, the finding proves that increase in the percentage of reinforcement particle instigates agglomeration on the AA6061 composites. Hardness test demonstrated that the inclusion of hard ZrO2 particles leads to substantial improvement in hardness and the hardness value started deteriorating when the composition reaches 15 per cent. The wear test results substantiated the enhancement of tribological property due to the inclusion of distinct ZrO2 particles. Also, despite of addition of reinforcements, the wear rate increased when the load increases. SEM images proved that AA6061/ZrO2-5 per cent composite fashioned steady-state mild and smooth wear. EDX spectrum analysis revealed the existence of ZrO2 particles along with wear debris, which caused wear of 685 µm in AA6061/ZrO2-15 per cent composite.

Originality/value

The developed material possesses low wear rate which is the unique property of composite and frictional force which is directly proportional to load but the coefficient of friction remains apparently constant. As a whole, investigations on developed composites introduce a new material which is suitable for manufacturing of brake components for automobile industry.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
DOI: https://doi.org/10.1108/ILT-12-2017-0382
ISSN: 0036-8792

Keywords

  • Wear
  • Coefficient of friction
  • AA6061
  • ZrO2

To view the access options for this content please click here
Article
Publication date: 1 April 2020

Utilization of recycled hazardous waste bagasse as reinforcement to develop green composite material

Shashi Prakash Dwivedi and Garima Dwivedi

In the current scenario, air pollution and soil pollution from the industries wastes are one of the major problems all over the world. Further, disposal of these wastes…

HTML
PDF (1.8 MB)

Abstract

Purpose

In the current scenario, air pollution and soil pollution from the industries wastes are one of the major problems all over the world. Further, disposal of these wastes from industries are very costly. However, several attempts were carried out by various researchers in the past to use these wastes. One of the most common waste products is bagasse from sugar industries. These hazardous bagasse wastes lead to air and soil pollution. This study aims to recycle bagasse waste in the development of aluminium base composite as partial replacement of ceramic particles.

Design/methodology/approach

In the present investigation, recycled bagasse waste was used in the development of aluminium base composite as partial replacement of ceramic particles such as SiC, Al2O3 and B4C. Production industries of these ceramic particles (SiC, B4C and Al2O3) emit huge amount of greenhouse gases such as N2O3, CH4, CO2 and H2O. These green house gases produce lots of environment problem. Furthermore, production of these ceramic particles is also costly. AA6061 aluminium alloy was taken as matrix material. Composite material was developed using the stir casting technique.

Findings

Microstructure results showed proper distribution of bagasse ash and MgO powder in the aluminium base metal matrix composite. It was notified from analysis that minimum corrosion loss and minimum porosity were found for Al/2.5% bagasse ash/12.5% MgO powder composite. For the same composition, hardness and thermal expansion were also observed better as compared to other selected compositions. However, density and cost of composites continuously decrease by increasing percentage of bagasse ash in development of composite.

Originality/value

Results showed about 11.30% improvement in tensile strength, 11.64% improvement in specific strength and 40% improvement in hardness by using bagasse ash as reinforcement with MgO powder in development of aluminium base composite.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/WJE-03-2019-0069
ISSN: 1708-5284

Keywords

  • Corrosion protection
  • Green composite
  • Hazardous material
  • Recycling technology
  • Thermal expansion
  • Waste bagasse

To view the access options for this content please click here
Article
Publication date: 29 October 2019

Joining of AA6061 to polyvinyl chloride via hot extrusion

Isam Tareq Abdullah, Sabah Khammass Hussein and Abbas Khammas Hussein

The purpose of this paper is to join aluminium alloy AA6061 with polyvinyl chloride (PVC) sheets using the friction spot technique.

HTML
PDF (1.3 MB)

Abstract

Purpose

The purpose of this paper is to join aluminium alloy AA6061 with polyvinyl chloride (PVC) sheets using the friction spot technique.

Design/methodology/approach

The AA6061 specimen was drilled with a semi-conical hole and put over the PVC specimen with a lap configuration. A friction spot technique was used to generate the required heat to melt and extrude the PVC through the aluminium hole. In this study, three process parameters were used: time, plunging depth and rotating speed of the tool. Thermal finite element model was built to analyse the process temperature. Effect of the process parameters on the joint shear strength and temperature was analysed using the design of experiments method. The microstructure investigation of the joint cross section was examined.

Findings

The input heat melted and extruded the polymer into the aluminium hole with the aid of tool pressure. A mechanical interlock was observed at the interface line between the polymer and aluminium. The scattered aluminium fragments into the molten polymer increased the shear strength of the joint. The hole diameter exhibited the highest effect on the joint strength compared with the other parameters. Specimen of minimum hole diameter recorded the maximum shear strength of 224 MPa. The proposed model gave a good agreement with the experimental data.

Originality/value

For the first time, the PVC was joined with AA6061 by the hot extrusion using the friction spot technique. The shear strength of joint reached 7.5 times of the base material (PVC).

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-08-2019-0081
ISSN: 1757-9864

Keywords

  • FEM
  • Extrusion
  • AA6061
  • Friction spot
  • PVC

To view the access options for this content please click here
Article
Publication date: 6 March 2017

The self-healing evaluation of microcapsule-based epoxy coatings applied on AA6061 Al alloy in 3.5% NaCl solution

Mehdi Shahidi Zandi and Majdeh Hasanzadeh

The aim of this work is to investigate the self-healing performance of epoxy coatings containing microcapsules. The microcapsule-based coatings were applied on AA6061 Al…

HTML
PDF (1.9 MB)

Abstract

Purpose

The aim of this work is to investigate the self-healing performance of epoxy coatings containing microcapsules. The microcapsule-based coatings were applied on AA6061 Al alloy and immersed in 3.5 per cent NaCl solution.

Design/methodology/approach

Microcapsules with urea–formaldehyde as the shell and linseed oil as the healing agent were prepared by in situ polymerization in an oil-in-water emulsion. For the sake of an optimum self-healing system, some coating samples were prepared by using different microcapsule concentrations: 0, 5, 10 and 20 Wt.%. The scratch-filling efficiency as the theoretical estimate of the self-healing performance was calculated for the coating samples with different microcapsule concentrations. The scratch-sealing efficiency (SSE) as a particularly crucial parameter in the self-healing evaluation of coatings was measured by both electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques.

Findings

According to EIS and EN results, the coating samples containing 5 and 10 per cent microcapsules provided the insignificant self-healing performance, while the coating sample containing 20 per cent microcapsules exhibited the acceptable self-healing performance to AA6061 alloy in the NaCl solution. The measured SSE values confirmed the good agreement of EN data with electrochemical parameters obtained from the EIS technique.

Originality/value

This work is an attempt to evaluate the self-healing performance of microcapsule-based epoxy coatings applied on AA6061 Al alloy in sea water.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/ACMM-01-2016-1640
ISSN: 0003-5599

Keywords

  • Electrochemical impedance spectroscopy (EIS)
  • Electrochemical noise (EN)
  • Microcapsule
  • Scratch-sealing efficiency (SSE)
  • Self-healing coating

To view the access options for this content please click here
Article
Publication date: 14 January 2019

Fabrication and tribological study of AA6061 hybrid metal matrix composites reinforced with SiC/B4C nanoparticles

Shubhajit Das, Chandrasekaran M., Sutanu Samanta, Palanikumar Kayaroganam and Paulo Davim J.

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world…

HTML
PDF (2.4 MB)

Abstract

Purpose

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano addition effect on tribological properties is essential to be used in automotive and industrial applications. The current work investigates the sliding wear behavior of an aluminum alloy (AA) 6061-based hybrid metal matrix composites (HMMCs) reinforced with SiC and B4C ceramic nanoparticles.

Design/methodology/approach

The hybrid composites are fabricated using stir casting process. Two different compositions were fabricated by varying the weight percentage of the ceramic reinforcements. An attempt has been made to study the wear and friction behavior of the composites using pin-on-disc tribometer to consider the effects of sliding speed, sliding distance and the normal load applied.

Findings

The tribological tests are carried out and the performances were compared. Increase in sliding speed to 500 rpm resulted in the rise of temperature of the contacting tribo-surface which intensified the wear rate at 30N load for the HMMC. The presence of the ceramic particles further reduced the contact region of the mating surface thus reducing the coefficient of friction at higher sliding speeds. Oxidation, adhesion, and abrasion were identified to be the main wear mechanisms which were further confirmed using energy dispersive spectroscopy and field emission scanning electron microscopy (FESEM) of the worn out samples.

Practical implications

The enhancement of wear properties is achieved because of the addition of the SiC and B4C ceramic nanoparticles, in which these composites can be applied to automobile, aerospace and industrial products where the mating parts with less weight is required.

Originality/value

The influence of nanoparticles on the tribological performance is studied in detail comprising of two different ceramic particles which is almost new research. The sliding effect of hybrid composites with nano materials paves the way for using these materials in engineering and domestic applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/ILT-05-2018-0166
ISSN: 0036-8792

Keywords

  • Dry sliding wear
  • SEM/EDX analysis
  • Tribological behavior
  • Hybrid aluminium metal matrix composites

To view the access options for this content please click here
Article
Publication date: 29 January 2020

Effect of cerium nitrate and salicylic acid on the titanium–zirconium chemical conversion coating of 6061 aluminum alloy

Xiaobo Wang, Wen Zhan and Boyi Gui

The purpose of this paper is to develop a chrome-free and phosphorus-free chemical conversion coating with good corrosion resistance, a novel chemical conversion coating…

HTML
PDF (5.1 MB)

Abstract

Purpose

The purpose of this paper is to develop a chrome-free and phosphorus-free chemical conversion coating with good corrosion resistance, a novel chemical conversion coating was prepared by adding cerium nitrate hexahydrate and salicylic acid in the treatment solution containing titanium/zirconium ions on 6061 aluminum alloy.

Design/methodology/approach

Compared with the AA6061 aluminum alloy matrix, the self-corrosion potential of the conversion coating is significantly positively shifted, the self-corrosion current density is greatly reduced and its corrosion resistance is significantly improved. Morphology and composition of the conversion coatings were observed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microdomain structure of conversion coatings at different formation stages was analyzed by electron probe microanalyzer.

Findings

An optimized preparation technique of titanium–zirconium chemical conversion coating for AA6061 aluminum alloy is obtained: H2TiF6 4 mL/L, H2ZrF6 0.4 mL/L, salicylic acid 0.35 g/L, Ce(NO3)3·6H2O 0.14 g/L, reaction temperature 30°C, reaction time 120 s and pH 4.0.

Originality/value

The coating forms on the Al(Fe)Si intermetallic compound, and Ce3+ is preferentially adsorbed on the intermetallic compound. The hydrolysis of Ce3+ causes the local pH of the solution to decrease, which promotes matrix dissolution and charge migration. As the microanode/microcathode reaction occurs, the local pH of the solution increases, and Al2O3/ZrO2/TiO2 begins to deposit on the surface of the metal substrate.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/ACMM-10-2019-2201
ISSN: 0003-5599

Keywords

  • Corrosion resistance
  • Aluminum alloy
  • Conversion coating
  • Cerium nitrate
  • Salicylic acid

To view the access options for this content please click here
Article
Publication date: 16 January 2017

Rapid tooling using friction stir welding and machining

Esraa Saleh Abdel-All, Matthew Charles Frank and Iris Violeta Rivero

This paper aims to present a friction stir molding (FSM) method for the rapid manufacturing of metal tooling. The method uses additive and subtractive techniques to…

HTML
PDF (3.9 MB)

Abstract

Purpose

This paper aims to present a friction stir molding (FSM) method for the rapid manufacturing of metal tooling. The method uses additive and subtractive techniques to sequentially friction stir bond and then mill slabs of metal. Mold tooling is grown in a bottom-up fashion, overcoming machining accessibility problems typically associated with deep cavity tooling.

Design/methodology/approach

To test the feasibility of FSM in building functional molds, a layer addition procedure that combines friction stir spot welding (FSSW) with an initial glue application and clamping for slabs of AA6061-T651 was investigated. Additionally, FSSW parameters and the mechanical behavior of test mold materials, including shear strength and hardness, were studied. Further, scanning electron microscopy (SEM)/elemental map analysis (EDS) of the spot weld zones was carried out to understand the effect of FSSW on the glue materials and to study potential mixing of glue with the plate materials in the welded zone.

Findings

The results indicate that FSM provides good layer stacking without gaps when slabs are pre-processed through sand blasting, moistening, uniform clamping and FSSW using a tapered pin tool. The tensile shear strength results revealed that the welded spots were able to withstand cutting forces during machining stages; however, FSSW was found to cause hardness reduction among spot zones because of over-aging. The SEM/EDS results showed that glue was not mixed with slab materials in spot zones. The proposed process was able to build a test tooling sample successfully using AA6061-T651 plates welded and machined on a three-axis computer numerical control (CNC) mill.

Originality/value

The proposed FSM process is a new process presented by the authors, developed for the rapid manufacturing of metal tooling. The method uses additive and subtractive techniques to sequentially friction stir bond and then mill slabs of metal. The use of FSSW process for materials addition is an original contribution that enables automatic process planning for this new process.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-08-2015-0107
ISSN: 1355-2546

Keywords

  • Rapid tooling
  • Additive/Subtractive manufacturing
  • Friction stir spot welding

To view the access options for this content please click here
Article
Publication date: 23 September 2019

Evolution of face-centered-cubic polycrystalline plastic anisotropy under biaxial loading by crystal plasticity finite element method

Dan Zhao, Cun Xin, Tao Jin, Xiaopeng Yan, Shenggguo Ma and Zhihua Wang

The purpose of this study to analyze the plastic anisotropy of 6061 aluminum alloy with finite deformation using crystal plasticity finite element method.

HTML
PDF (2.6 MB)

Abstract

Purpose

The purpose of this study to analyze the plastic anisotropy of 6061 aluminum alloy with finite deformation using crystal plasticity finite element method.

Design/methodology/approach

A representative volume element (RVE) model was constructed by Voronoi tessellation. In this model, grain shapes, grain orientations and distribution of grains were involved. The mechanical response of the component under composite loading was tested using specify cruciform specimen. Moreover, different stress and strain states in the specific central region were analyzed to reveal the effects of complex loading.

Findings

We calculated the influence of misorientation of adjacent grains as well as the evolution of the micro structure’s plastic deformation on the macroscopic deformation of the structure. Geometry design for the cruciform specimen helps obtain a homogenous distribution of the stress and strain at the specimen center. In this process, the initial grain orientation is also an important factor, and the larger misorientations between special grains may cause greater stress concentration.

Originality/value

The influence of micro-scale factors on macro-scale plastic anisotropy of AA6061 is analyzed using RVE model and cruciform specimen, and they offer a reference for related research.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/EC-12-2018-0573
ISSN: 0264-4401

Keywords

  • Crystal plasticity
  • Plastic anisotropy
  • Biaxial tensile
  • Voronoi tessellation

To view the access options for this content please click here
Article
Publication date: 21 June 2013

Thermo‐mechanical analysis of cold extrusion process using stream function and finite element methods

H. Goodarzi Hosseinabadi and S. Serajzadeh

The purpose of this paper is to propose a mathematical model to estimate required energy and temperature distribution during cold extrusion process.

HTML
PDF (298 KB)

Abstract

Purpose

The purpose of this paper is to propose a mathematical model to estimate required energy and temperature distribution during cold extrusion process.

Design/methodology/approach

An admissible velocity field is generated based on stream function technique. Then, the required energy and the temperature distributions in the metal and the extrusion die are determined by a coupled upper bound‐finite element analysis.

Findings

To examine the proposed model, cold extrusion of AA6061‐10%SiCp is considered and the predicted extrusion force‐displacement diagrams in different reductions are compared with the experimental ones and reasonable agreement is observed. Furthermore, it is found that there is a linear relationship between maximum temperature and logarithm of ram velocity for the examined composite.

Originality/value

This approach requires shorter run‐time as compared with fully finite element analyses while the model is particularly appropriate for high speed extrusion processes where the adiabatic heating is of importance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/15736101311329205
ISSN: 1573-6105

Keywords

  • Stream function technique
  • Upper bound theorem
  • Finite element analysis
  • Cold extrusion
  • Mathematical modelling

Access
Only content I have access to
Only Open Access
Year
  • Last 6 months (4)
  • Last 12 months (10)
  • All dates (74)
Content type
  • Article (72)
  • Earlycite article (2)
1 – 10 of 74
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here