Search results

1 – 10 of 22
Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1306

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 April 2000

108

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 March 1998

86

Abstract

Details

Assembly Automation, vol. 18 no. 1
Type: Research Article
ISSN: 0144-5154

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1161

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 July 2021

Sarfaraz Kamangar, N. Ameer Ahamad, N. Nik-Ghazali, Ali E. Anqi, Ali Algahtani, C. Ahamed Saleel, Syed Javed, Vineet Tirth and T.M. Yunus Khan

Coronary artery disease (CAD) is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the…

Abstract

Purpose

Coronary artery disease (CAD) is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the restriction of blood supply, leading to myocardial infarction. The current study investigates the influence of multi stenosis on hemodynamic properties in a patient-specific left coronary artery.

Design/methodology/approach

A three-dimensional model of the patient-specific left coronary artery was reconstructed based on computed tomography (CT) scan images using MIMICS-20 software. The diseased model of the left coronary artery was investigated, having the narrowing of 90% and 70% of area stenosis (AS) at the left anterior descending (LAD) and left circumflex (LCX), respectively.

Findings

The results indicate that the upstream region of stenosis experiences very high pressure for 90% AS during the systolic period of the cardiac cycle. The pressure drops maximum as the flow travels into the stenotic zone, and the high flow velocities were observed across the 90% AS. The higher wall shear stresses occur at the stenosis region, and it increases with the increase in the flow rate. It is found that the maximum wall shear stress across 90% AS is at the highest risk for rupture. A recirculation region immediately after the stenosis results in the further development of stenosis.

Originality/value

The current study provides evidence that there is a strong effect of multi-stenosis on the blood flow in the left coronary artery.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2450

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 21 July 2023

M. Neumayer, T. Suppan, T. Bretterklieber, H. Wegleiter and Colin Fox

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE…

Abstract

Purpose

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE) based sensor simulations for the inverse problem of electrical capacitance tomography. Two known computational bottlenecks are the assembly of the FE equation system as well as the computation of the Jacobian. Here, existing computation techniques like adjoint field approaches require additional simulations. This paper aims to present fast numerical techniques for the sensor simulation and computations with the Jacobian matrix.

Design/methodology/approach

For the FE equation system, a solution strategy based on Green’s functions is derived. Its relation to the solution of a standard FE formulation is discussed. A fast stiffness matrix assembly based on an eigenvector decomposition is shown. Based on the properties of the Green’s functions, Jacobian operations are derived, which allow the computation of matrix vector products with the Jacobian for free, i.e. no additional solves are required. This is demonstrated by a Broyden–Fletcher–Goldfarb–Shanno-based image reconstruction algorithm.

Findings

MATLAB-based time measurements of the new methods show a significant acceleration for all calculation steps compared to reference implementations with standard methods. E.g. for the Jacobian operations, improvement factors of well over 100 could be found.

Originality/value

The paper shows new methods for solving known computational tasks for solving inverse problems. A particular advantage is the coherent derivation and elaboration of the results. The approaches can also be applicable to other inverse problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 15 February 2022

Md. Hazrat Ali, Gani Issayev, Essam Shehab and Shoaib Sarfraz

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process…

3486

Abstract

Purpose

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process automation and the possibility of saving labor, waste materials, construction time and hazardous procedures for humans. Significant researches were conducted to identify the performance of the materials, while some researches focused on the development of novel techniques and methods, such as building information modeling. This paper aims to provide a detailed overview of the state-of-the-art of currently used 3D printing technologies in the construction areas and global acceptance in its applications.

Design/methodology/approach

The working principle of additive manufacturing in construction engineering (CE) is presented in terms of structural design, materials used and theoretical background of the leading technologies that are used to construct buildings and structures as well as their distinctive features.

Findings

The trends of 3D printing processes in CE are very promising, as well as the development of novel materials, will gain further momentum. The findings also indicate that the digital twin (DT) in construction technology would bring the industry a step forward toward achieving the goal of Industry 5.0.

Originality/value

This review highlights the prospects of digital manufacturing and the DT in construction engineering. It also indicates the future research direction of 3D printing in various constriction sectors.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Book part
Publication date: 4 May 2018

Eka Maida, Adhiana and Zuriani

Purpose – The purpose of this research is to examine the diversity of macrozoobenthos as well as its relationship with water quality and substrate in the pond culture area…

Abstract

Purpose – The purpose of this research is to examine the diversity of macrozoobenthos as well as its relationship with water quality and substrate in the pond culture area.

Design/Methodology/Approach – The method of sampling area is on five observation stations by purposive sampling. The research was done indirectly (ex situ) for macrozoobenthic identification at the Ecology Laboratory, Faculty of Mathematics and Natural Sciences.

Findings – The fairness/uniformity index obtained from the five research stations ranging from 0.483 to 0.923 indicates a high degree of uniformity. This indicates that the macrozoobenthos biological index at the study site can be used as an indicator that water quality is in good condition and has the potential to be developed into an aquaculture area as well as supporting the success of the shrimp farming as one of the sub-systems of the shrimp agribusiness.

Research Limitations/Implications – This research can be a source of information for the management and utilization of environment in the research area, so that shrimp harvest can be optimized in the pond farming area.

Originality/Value – This research has found that macrozoobenthos included 61 species.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

1 – 10 of 22