Search results

1 – 10 of 324
Article
Publication date: 25 December 2023

Fatima Harbate, Nouh Izem, Mohammed Seaid and Dia Zeidan

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Abstract

Purpose

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Design/methodology/approach

The governed equations consist of a range of conservation laws modeling a classification of two-phase flow phenomena subjected to a velocity nonequilibrium for the gas–liquid mixture. Effects of the relative velocity are accounted for in the present model by a kinetic constitutive relation coupled to a collection of specific equations governing mass and volume fractions for the gas phase. Unlike many two-phase models, the considered system is fully hyperbolic and fully conservative. The suggested relaxation approach switches a nonlinear hyperbolic system into a semilinear model that includes a source relaxation term and characteristic linear properties. Notably, this model can be solved numerically without the use of Riemann solvers or linear iterations. For accurate time integration, a high-resolution spatial reconstruction and a Runge–Kutta scheme with decreasing total variation are used to discretize the relaxation system.

Findings

The method is used in addressing various nonequilibrium two-phase flow problems, accompanied by a comparative study of different reconstructions. The numerical results demonstrate the suggested relaxation method’s high-resolution capabilities, affirming its proficiency in delivering accurate simulations for flow regimes characterized by strong shocks.

Originality/value

While relaxation methods exhibit notable performance and competitive features, as far as we are aware, there has been no endeavor to address nonequilibrium two-phase flow problems using these methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2023

Goksel Saracoglu, Ferhat Ceritbinmez, Vildan Özkan and Ahmet Yapici

This study aims to systematically compare the effect of increasing fiber–matrix interface adhesion and matrix toughness in layered composite materials.

Abstract

Purpose

This study aims to systematically compare the effect of increasing fiber–matrix interface adhesion and matrix toughness in layered composite materials.

Design/methodology/approach

Silane ((3-glycidyloxypropyl) trimethoxysilane) was applied to strengthen the fiber–matrix interface connection in e-glass/epoxy laminated composite material. Using a cationic surfactant, 0.1% multi-walled carbon nanotubes (CNTs) were added to the matrix in two different ways, by with and without chemical functionalization using the vacuum infusion method.

Findings

In the results obtained from the three-point bending test specimens, it was determined that the synergistic effect of silane application and non-functionalized CNT in the matrix was higher in terms of flexural modulus and strength values.

Practical implications

The functionalization of multi-walled CNT did not give the expected results because of reasons such as viscosity increase and agglomeration in the matrix.

Originality/value

In this study, a simple model for normalization and prediction purposes was developed, which allows the determination of the flexural modulus and un-notched flexural strength values from one test result of the notched specimen. A systematic comparison was performed by varying each parameter in the composite material.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 August 2023

Hanadi Al-Zubaidi and Rabab Allouzi

Cement can be replaced to reduce the energy consumption and the environmental impact of cement. Also, foamed concrete can be used structurally in residential buildings to reduce…

Abstract

Purpose

Cement can be replaced to reduce the energy consumption and the environmental impact of cement. Also, foamed concrete can be used structurally in residential buildings to reduce weight and improve thermal insulation. To achieve these two goals, this paper aims to investigate the effect of basalt powder as a partial replacement of either cement or sand.

Design/methodology/approach

This paper investigates the effect of basalt powder as a partial replacement of either cement or sand on the mechanical properties of foamed concrete used to cast slabs. First, mechanical properties of foamed concrete are tested with and without replacement of basalt. Then, six slabs of different thicknesses and mixes are investigated. The thicknesses considered are 150- and 200-mm slabs. The three mixes used to construct these slabs are foamed concrete with no basalt powder, foamed concrete with replacement of 20% of cement by basalt powder and foamed concrete with replacement of 20% of sand by basalt powder. The flexural behavior of these slabs is investigated.

Findings

All the slabs failed in the commonly intended flexural mode. The results show that the basalt powder acted as a strong filler material in the foamed concrete mix based on mechanical properties and flexural behavior. The proposed foamed concrete slabs can be used structurally in residential buildings.

Originality/value

A natural waste material that can be used to promote energy efficiency and reduce emission is basalt. In this paper, basalt powder is suggested to be used due to its chemical composition that is similar to cement. Also, basalt powder is low in cost as it is waste, while basalt aggregate is prepared, and it is only used as filler in paved roads. Accordingly, basalt is partially used instead of cement to reduce the emission of carbon dioxide that results from the cement manufacturing. Also, it is used as a partial alternative to sand which can be considered as a new stronger source as filling material used in the production of concrete.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 July 2023

Ala'aldin Al-Hassoun and Rabab Allouzi

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings…

Abstract

Purpose

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings, bridges' piers, offshore and marine structures. This paper is intended to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with self-compacted concrete (SCC) containing nanoclay (NC).

Design/methodology/approach

First, experimental investigation is conducted to select the optimal NC percentage that improves the mechanical properties. Different mixing method, mixture ingredients, cement content, and NC percentage are considered. Then, slender and short CFDST columns are tested for axial capacity to investigate the effect of adding the optimum NC percentage on column's capacity and failure mode.

Findings

The test results show that adding 3% NC by cement weight using dry mixing method to SCC is the optimum ratio. It is concluded that adding 3% NC by cement weight increased the CFDST column's capacity, especially the specimens with higher slenderness ratio. Moreover, it is concluded that more specimens should be tested under various geometric and reinforcement details.

Originality/value

Recently, CFDST tube columns solve many structural and architectural problems that engineers have encountered in traditional systems. Therefore, more studies are required to design high-performance columns capable of carrying complex loads with high efficiency since the traditional design could not achieve the required performance. Since concrete contributes to a large portion in the axial capacity of the CFDST columns, it is proposed to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with (SCC containing NC. Previous research has affirmed the effectiveness of employing nanoclay in the concrete's workability, durability, microstructures, and mechanical properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 October 2023

De-Xing Zheng and Dateng Zheng

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

93

Abstract

Purpose

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

Design/methodology/approach

First, the role of lubricant/coolant in bearing temperature was discussed separately, and the gray-box models on the heat convection inside a bearing cavity were also created. Next, the bearing node setting scheme was optimized. Consequently, a novel semi-empirical two-phase flow thermal grid for high-speed angular contact ball bearings was planned. With this model, the thermal network for the selected motored spindle was built, and the numerical solutions for bearing temperature rise were obtained and contrasted with the experimental values for validation. The polynomial interpolation on test data, meanwhile, was also performed to help us observe the temperature change trend. Finally, the simulations based on the current models of bearings were implemented, whose corresponding results were also compared with our research work.

Findings

The validation result indicates that the thermal prediction is more accurate and efficient when the developed semi-empirical oil–air two-phase flow model is employed to assess the thermal change of bearings. Clearly, we provide a more proper model for the thermal assessment of bearing and even spindle heating.

Originality/value

To the best of the authors’ knowledge, this paper introduced the oil–air separation and gray-box model for the first time to describe the heat exchange inside bearing cavities and accordingly presents an efficient semi-empirical oil–air two-phase flow model to evaluate the bearing temperature variation by using thermal network method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0180/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 June 2023

Hümeyra Çetin Babaoğlu, Sultan Arslan Tontul, Lokman Karaduman and Yakup Üzgü

The article aimed to use sourdough powder as a natural preservative against mould growth and a glycemic index reducer agent.

Abstract

Purpose

The article aimed to use sourdough powder as a natural preservative against mould growth and a glycemic index reducer agent.

Design/methodology/approach

In this study, muffin production was carried out with sourdough powder addition at the rate of 0, 15 and 30%. To obtain the sourdough powder, sourdough was fermented by using Lactobacillus fermentum, Lactococcus lactis (previously isolated from spontaneous sourdough) and Saccharomyces cerevisiae.

Findings

The specific volume, number of crumb pores and total pore area were not adversely affected by the addition of 15% or 30% sourdough powder (p > 0.05). The sourdough addition reduced the L* values of the muffin crust, while the b* value of the muffin crumb with 30% sourdough powder decreased compared to the control (p < 0.05). The addition of sourdough powder decreased eGI and RDS values and increased SDS content of samples (p < 0.05). In storage, the mould growth was observed in the control group and samples containing 15% sourdough powder on the 5th day, while the samples containing 30% sourdough powder were moulded on the 7th day. The sourdough powder increased the hardness and chewiness values of samples (p < 0.05), while it had no significant effect on springiness, cohesiveness and resilience (p > 0.05).

Originality/value

The sourdough powder provides a lower glycemic index and longer microbial shelf life that makes the product advantageous in consumer demand. This is the first time sourdough powder has been used to achieve this purpose.

Details

British Food Journal, vol. 125 no. 10
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 24 October 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Kylyn A. Morales, Dalisa Mars L. Revilleza, Laurence V. Catindig and Marish S. Madlangbayan

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete…

Abstract

Purpose

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete containing CSA can achieve strengths that are comparable to regular concrete. The purpose of the present work is to evaluate the concrete’s durability-related properties to supplement these earlier findings.

Design/methodology/approach

Cylindrical specimens were prepared with a constant water–cement ratio of 0.50 and CSA content ranging from 0% to 50% (at 10% increment) by volume of the total coarse aggregates. The specimens were cured for 28 days and then tested for density, surface hardness, electrical resistivity and water sorptivity. The surface hardness was measured to describe the concrete resistance to surface wearing, while the resistivity and sorptivity were evaluated to describe the material’s resistance to fluid penetration.

Findings

The results showed that the surface hardness of concrete remained on average at 325 Leeb and did not change significantly with CSA addition. The distribution of surface hardness was also similar across all CSA groups, with the interquartile range averaging 59 Leeb. These results suggest that the cement paste and gravel stiffness had a more pronounced influence on the surface hardness than CSA. On the other hand, concrete became lighter by about 9%, had lower resistivity by 80% and had significantly higher initial sorptivity by up to 110%, when 50% of its natural gravel was replaced with CSA. Future work may be done to improve the durability of CSA when used as coarse aggregate.

Originality/value

The present study is the first to show the lack of correlation between CSA content and surface hardness. It would mean that the surface hardness test may not completely capture the porous nature of CSA-added concrete. The paper concludes that without additional treatment prior to mixing, CSA may be limited only to applications where concrete is not in constant contact with water or deleterious substances.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2022

T. Thendral Thiyaku

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight…

Abstract

Purpose

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight percentages of SiO2 nanoparticles (SiO2NPs), as well as to investigate the mechanical, barrier, thermal, optical, surface hydrophobicity and antibacterial properties of PBAT incorporated with CEO as a natural plasticizer and SiO2NPs as a nanofiller.

Design/methodology/approach

PBAT-based bio-composites films were fabricated with different weight percentage of CEO (5% and 10%) and nanosilica (1% and 3%) by solution casting method. The packaging performance was investigated using universal testing machine, spectrophotometer, contact angle goniometer, oxygen and water vapour permeability tester. The antibacterial properties of PBAT-based nanocomposite and composite films were investigated using the ISO 22196 by zone of inhibition method.

Findings

The mechanical results exhibited that the addition of 10 Wt.% of CEO into PBAT increases the percentage of elongation, whereas, the addition of 3 Wt.% of SiO2NPs increases the tensile strength of the composite film. The presence of CEO in PBAT exhibits a good barrier against water permeability and SiO2NPs in the PBAT matrix help to reduce the opacity and hydrophobicity. The antimicrobial and thermal results revealed that the inclusion of 10 Wt.% of CEO and 3 Wt.% of SiO2NPs into PBAT polymer improved antimicrobial and thermal resistance properties.

Originality/value

A new PBAT-based active packaging film developed using natural plasticizers CEO and nanofiller SiO2 with a wide range of applications in the active food packaging applications. Moreover, they have good surface hydrophobicity, thermal stability, mechanical, barrier and antibacterial properties.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 324