Search results

1 – 10 of 16
Article
Publication date: 11 April 2016

Qunfeng Zeng, Jinhua Zhang, Jun Hong and Cheng Liu

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication…

564

Abstract

Purpose

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication unit is a key component for high-speed grinding machine tools. The development of oil-air lubrication unit suitable for high/ultrahigh rotational speed is a daunting task owing to the lubrication challenges.

Design/methodology/approach

This paper emphasizes three main issues: the analysis of oil-air two-phase flow for tradition oil-air lubrication unit with the simulation method; the design of new oil-air lubrication unit for the high/ultrahigh-speed grinding machine tools and the comparative experiment research of tradition and new oil-air lubrication unit. The optimum structure parameters that create the optimum flow pattern and operating conditions resulting in low temperature increase, vibration and noise of oil-air lubricated spindle can be achieved by the simulation method and experiments.

Findings

The simulation and experimental results show that new oil-air lubrication unit lubricating a high speed electric spindle has a better performance with a small temperature increase and vibration, which means that our proposed method is an effective design method for oil-air lubrication system.

Originality/value

A design method suitable for high-speed oil-air lubrication unit is proposed. New oil-air lubrication unit is expected to apply for high/ultrahigh rotational speed grinding machine tools.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

De-Xing Zheng and Dateng Zheng

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

91

Abstract

Purpose

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

Design/methodology/approach

First, the role of lubricant/coolant in bearing temperature was discussed separately, and the gray-box models on the heat convection inside a bearing cavity were also created. Next, the bearing node setting scheme was optimized. Consequently, a novel semi-empirical two-phase flow thermal grid for high-speed angular contact ball bearings was planned. With this model, the thermal network for the selected motored spindle was built, and the numerical solutions for bearing temperature rise were obtained and contrasted with the experimental values for validation. The polynomial interpolation on test data, meanwhile, was also performed to help us observe the temperature change trend. Finally, the simulations based on the current models of bearings were implemented, whose corresponding results were also compared with our research work.

Findings

The validation result indicates that the thermal prediction is more accurate and efficient when the developed semi-empirical oil–air two-phase flow model is employed to assess the thermal change of bearings. Clearly, we provide a more proper model for the thermal assessment of bearing and even spindle heating.

Originality/value

To the best of the authors’ knowledge, this paper introduced the oil–air separation and gray-box model for the first time to describe the heat exchange inside bearing cavities and accordingly presents an efficient semi-empirical oil–air two-phase flow model to evaluate the bearing temperature variation by using thermal network method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0180/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 July 2021

Heyun Bao, Xiaonan Hou, Xin Tang and Fengxia Lu

Under-race lubrication can increase the amount of lubricating oil entering a bearing and greatly improve lubrication and cooling effects. The oil-air two-phase flow and heat…

Abstract

Purpose

Under-race lubrication can increase the amount of lubricating oil entering a bearing and greatly improve lubrication and cooling effects. The oil-air two-phase flow and heat transfer characteristics inside a ball bearing with under-race lubrication play a key role in lubrication and cooling performance. The purpose of this paper is to study these two characteristics, and then provide guidance for lubrication and heat dissipation of bearing with under-race lubrication.

Design/methodology/approach

In this paper, a simplified three-dimension heat transfer model of ball bearing with under-race lubrication is established; the coupled level set volume of fluid method is used to track the oil-air two-phase flow, and the Palmgren method is used to calculate the heat generation. The influence of rotation speed and inlet velocity on oil volume fraction, temperature and convection heat transfer is investigated. A temperature test for under-race lubrication is carried out.

Findings

Because of the centrifugal force, lubricating oil is located more on the outer ring raceway. As the rotation speed decreases and the inlet velocity increases, the oil volume fraction increases and the temperature decreases. Furthermore, the area with high oil volume fraction has a large convection heat transfer coefficient and low temperature. The error between the simulation temperature and the test temperature is within 10%.

Originality/value

The research on the temperature field and convection heat transfer characteristics of under-race lubrication ball bearings at different rotation speeds and inlet velocities is rarely involved.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2018

Cong Liu, Baohong Tong, Guotao Zhang, Wei Wang, Kun Liu and Peimin Xu

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Abstract

Purpose

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Design/methodology/approach

Oil–air lubrication equations between point contact counterparts were established on the basis of volume of fluid model. The effects of oil supply and injection azimuth on oil-phase volume fraction and its pressure distribution were simulated with commercial software Fluent. Characteristics of point contact sliding wear were then tested with an MFT-3000 friction tester under oil–air lubrication condition. The influence of flow behavior on wear characteristic was investigated combined with numerical and experimental results. The wear mechanism was revealed using SEM, EDS and ferrography.

Findings

When air supply speed is constant, the oil-phase volume fraction increases with the increase in oil supply, which helps form continuous oil film and decrease the sliding wear evidently. The injection angle and distance considerably influence the oil–air flow behavior. When injecting at a certain distance and angle, the oil-phase volume fraction reaches its maximum, and the abrasion loss is minimal. Under the test conditions in this study, abrasive particles are mainly debris and a few spiral cuttings. The wear mechanism is abrasive wear.

Originality/value

The influence of the behavior of oil–air lubrication flow on the characteristic of point contact sliding wear is analyzed. This work provides guidance for the application of oil–air lubrication technology in point contact friction pairs.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 January 2021

Fengxia Lu, Meng Wang, Weizhen Liu, Heyun Bao and Rupeng Zhu

This paper aims to propose a numerical method to calculate the convective heat transfer coefficient of spiral bevel gears under the condition of splash lubrication and to reveal…

Abstract

Purpose

This paper aims to propose a numerical method to calculate the convective heat transfer coefficient of spiral bevel gears under the condition of splash lubrication and to reveal the lubrication and temperature characteristics between the gears and the oil-air two-phase flow.

Design/methodology/approach

Based on computational fluid dynamics, the multiple reference frames (MRF) method was used to simulate the rotational characteristics of gears and the motions of their surrounding fluid. The lubrication and temperature characteristics of gears were studied by combining the MRF method with the volume of the fluid multiphase flow model.

Findings

The convective heat transfer coefficient can be improved by increasing the rotational speed and the oil immersion depth. Moreover, the temperature of the tooth surface having a large convective heat transfer coefficient is also found to be low. A large convection heat transfer coefficient could lead to a good cooling effect.

Originality/value

This method can be used to obtain the convective heat transfer coefficient values at different meshing positions, different radii and different tooth surface positions. It also can provide research methods for improving the cooling effect of gears under the condition of splash lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0233/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2018

Sam Ban, William Pao and Mohammad Shakir Nasif

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

3648

Abstract

Purpose

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

Design/methodology/approach

The abrupt change in gas/liquid velocities, which causes transition of flow patterns, was analyzed using incompressible volume of fluid method to capture the dynamic gas-liquid interface. The validity of present model and its methodology was validated using Baker’s flow regime chart for 3.15 inches diameter horizontal pipe and with existing experimental data to ensure its correctness.

Findings

The present paper proposes simplified correlations for liquid holdup and slug frequency by comparison with numerous existing models. The paper also identified correlations that can be used in operational oil and gas industry and several outlier models that may not be applicable.

Research limitations/implications

The correlation may be limited to the range of material properties used in this paper.

Practical implications

Numerically derived liquid holdup and holdup frequency agreed reasonably with the experimentally derived correlations.

Social implications

The models could be used to design pipeline and piping systems for oil and gas production.

Originality/value

The paper simulated all the seven flow regimes with superior results compared to existing methodology. New correlations derived numerically are compared to published experimental correlations to understand the difference between models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2018

Yang Li, Zhaojun Yang, Fei Chen and Jin Zhao

This paper aims to investigate the effects of air inlet flow rate on the bearing cavity and operating conditions during the oil-air lubrication.

Abstract

Purpose

This paper aims to investigate the effects of air inlet flow rate on the bearing cavity and operating conditions during the oil-air lubrication.

Design/methodology/approach

A model of oil-air lubrication of rolling bearings is established using computational fluid dynamics numerical simulation. Moreover, temperature and vibration experiments are carried out for comparisons and validation.

Findings

Results suggest that the velocity and pressure distributions of the oil-air flow inside the chamber are not uniform. Moreover, the uniform decreases with increasing air inlet flow rate. The non-uniform oil distribution inside the bearing significantly influences the bearing temperature rise and lubrication effect. Furthermore, the decrease in pressure uniformity enhances the vibration intensity and increases the amplitude of the vibration acceleration by more than 40 per cent. Increasing the air inlet flow rate improves lubrication and cooling efficiency but produces intense vibrations.

Originality/value

A method of establishing rolling bearings model under oil-air lubrication is presented in the paper. The effect of air inlet flow rate on flow uniform under oil-air lubrication has been researched insightfully. The results provide a useful reference to improve the oil-air lubrication system and enhance the operational stability of the motorized spindle.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 September 2022

Wenliang Zhang, Heng Huang, Guogang Gao and Xiaopeng Xie

The purpose of this paper is to design the novel oil–air distributor (N-OAD). Its structure design, oil feeding reliability, service life and viscosity properties of air bubble…

Abstract

Purpose

The purpose of this paper is to design the novel oil–air distributor (N-OAD). Its structure design, oil feeding reliability, service life and viscosity properties of air bubble (AB) oil were analyzed. Meanwhile, the formation mechanism of AB oil was established based on Kelvin–Helmholtz instability.

Design/methodology/approach

First, oil–air distributor (OAD) and N-OAD were randomly selected for testing when the air pressure was 0.25 MPa and oil feeding was 100 times per hour. Then, the bubbles were found in the lubricant during the experiment, and the void fraction and viscosity properties of AB oil were tested by image processing method and the MARS 40 rheometer, respectively.

Findings

N-OAD has longer service life and higher working reliability than OAD. The key factors of AB oil formation were air pressure and oil feeding. And the void fraction of AB oil has different results on the viscosity at high and low shear rates.

Originality/value

The outcome of this research paper gives an insight to improve the reliability of oil–air lubrication systems and the safety factor of machine tool spindle operation.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2018

Fangwei Xie, Xudong Zheng, Yaowen Tong, Bing Zhang, Xinjian Guo, Dengshuai Wang and Yun Wang

The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film.

Abstract

Purpose

The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film.

Design/methodology/approach

The FLUENT simulation model of the oil film between the friction disks is built. The effect of variation of working parameters such as input rotational speed, oil flow rate and film thickness on two-phase flow regime and transmission torque is studied by using the volume of fluid model.

Findings

The results show that the higher the rotational speed, the severer the cavitation is. In addition, the two-phase flow region makes the coverage of oil film over the friction pairs’ surface reduce, which results in a decrease in transmission torque for the hydro-viscous clutch.

Originality/value

These simulation results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for power transmission mechanism of oil film by considering the existence of a two-phase flow regime consisting of oil and air.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2015

Adriana Bonilla Riaño, Antonio Carlos Bannwart and Oscar M.H. Rodriguez

The purpose of this paper is to study a multiphase-flow instrumentation for film thickness measurement, especially impedance-based, not only for gas–liquid flow but also for…

Abstract

Purpose

The purpose of this paper is to study a multiphase-flow instrumentation for film thickness measurement, especially impedance-based, not only for gas–liquid flow but also for mixtures of immiscible and more viscous substances such as oil and water. Conductance and capacitive planar sensors were compared to select the most suitable option for oil – water dispersed flow.

Design/methodology/approach

A study of techniques for measurement of film thickness in oil – water pipe flow is presented. In the first part, some measurement techniques used for the investigation of multiphase flows are described, with their advantages and disadvantages. Next, examinations of conductive and capacitive techniques with planar sensors are presented.

Findings

Film thickness measurement techniques for oil–water flow are scanty in the literature. Some techniques have been used in studies of annular flow (gas–liquid and liquid–liquid flows), but applications in other flow patterns were not encountered. The methods based on conductive or capacitive measurements and planar sensor are promising solutions for measuring time-averaged film thicknesses in oil–water flows. A capacitive system may be more appropriate for oil–water flows.

Originality/value

This paper provides a review of film thickness measurements in pipes. There are many reviews on gas – liquid flow measurement but not many about liquid – liquid flow.

1 – 10 of 16