Search results

1 – 10 of 310
Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2023

Baldev Singh Rana, Gian Bhushan and Pankaj Chandna

The purpose of current study deals with the development and wear testing of jute and cotton fiber reinforced with nano fly ash-based epoxy composites. Performance of waste cotton…

Abstract

Purpose

The purpose of current study deals with the development and wear testing of jute and cotton fiber reinforced with nano fly ash-based epoxy composites. Performance of waste cotton fabric nano hybrid composites are compared with waste jute fabric nano hybrid composites.

Design/methodology/approach

Basic hand layup technique was used to develop composites. To optimize the parameters and design of experiments, Taguchi design was implemented to test wear rate and co-efficient of friction as per ASTM standards. Performance of waste cotton fabric nano hybrid composites is compared with waste jute fabric nano hybrid composites.

Findings

Result shows that nano fly ash lowers the wear rate and co-efficient of friction in developed composites. Findings reveals that hybrid composites of waste jute Fabric with 3 Wt.% of nano fly ash performed best amongst all composites developed. Morphology of nano composites worn out surfaces are also analyzed through SEM.

Practical implications

Practically, textile waste, i.e. jute, cotton and nano fly ash (thermal power plant) all wastes, is used to develop composites for multi-function application.

Social implications

Wastes are reused and recycled to develop epoxy-based composites for sustainable structures in aviation.

Originality/value

To the best of the authors’ knowledge, nano fly ash and jute, cotton combination is used for the first time to develop and test for wear application.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 October 2023

Dinesh Kumar, Satnam Singh and Surjit Angra

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as…

47

Abstract

Purpose

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as cylinder liner material in the engines (automotive, aerospace and aircraft industries).

Design/methodology/approach

The composites were prepared using the stir-casting technique, and their microstructure and corrosion behavior was evaluated using scanning electron microscopy (SEM) and potentiodynamic polarization test, respectively.

Findings

The results showed that the addition of CeO2 and GNPs improved the corrosion resistance of the composites, and the optimal combination of these two nanoparticles was found to be 3 wt.% CeO2 and 3 wt.% GNPs. The enhanced corrosion resistance was attributed to the formation of a protective layer on the surface of the composite, as well as the effective dispersion and uniform distribution of nanoparticles in the matrix. The 0.031362 was noted as the lowest corrosion rate (mmpy) and was noticed in 94% Al-6061 alloy + (3 Wt.% CeO2 + 3 Wt.% GNPs) sample at room temperature and at elevated temperatures; the corrosion rate (mmpy) was observed as 0.0601 and 0.0636 at 45 °C and 75 °C, respectively.

Originality/value

In the vast majority of the published research publications, either cerium oxide or graphene nanoplatelets were utilized as a single reinforcement or in conjunction with other types of reinforcement such as alumina, silicon carbide, carbon nano-tubes, tungsten carbide, etc., but on the combination of the CeO2 and GNPs as reinforcements have very less literatures with 2 wt.% each only. The prepared hybrid aluminum composite (reinforcing 1 wt.% to 3 wt.% in Al-6061 alloy) was considered for replacing the cylinder liner material in the piston-cylinder arrangement of engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 October 2018

Shubhajit Das, Chandrasekaran M., Sutanu Samanta, Palanikumar Kayaroganam and Paulo Davim J.

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano

Abstract

Purpose

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano addition effect on tribological properties is essential to be used in automotive and industrial applications. The current work investigates the sliding wear behavior of an aluminum alloy (AA) 6061-based hybrid metal matrix composites (HMMCs) reinforced with SiC and B4C ceramic nanoparticles.

Design/methodology/approach

The hybrid composites are fabricated using stir casting process. Two different compositions were fabricated by varying the weight percentage of the ceramic reinforcements. An attempt has been made to study the wear and friction behavior of the composites using pin-on-disc tribometer to consider the effects of sliding speed, sliding distance and the normal load applied.

Findings

The tribological tests are carried out and the performances were compared. Increase in sliding speed to 500 rpm resulted in the rise of temperature of the contacting tribo-surface which intensified the wear rate at 30N load for the HMMC. The presence of the ceramic particles further reduced the contact region of the mating surface thus reducing the coefficient of friction at higher sliding speeds. Oxidation, adhesion, and abrasion were identified to be the main wear mechanisms which were further confirmed using energy dispersive spectroscopy and field emission scanning electron microscopy (FESEM) of the worn out samples.

Practical implications

The enhancement of wear properties is achieved because of the addition of the SiC and B4C ceramic nanoparticles, in which these composites can be applied to automobile, aerospace and industrial products where the mating parts with less weight is required.

Originality/value

The influence of nanoparticles on the tribological performance is studied in detail comprising of two different ceramic particles which is almost new research. The sliding effect of hybrid composites with nano materials paves the way for using these materials in engineering and domestic applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 February 2024

Ram Niwas and Vikas Kumar

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and…

Abstract

Purpose

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and percentage elongation (EL) of AZ91D/AgNPs/TiO2 hybrid composite fabricated by friction stir processing.

Design/methodology/approach

An empirical model has been developed to govern crucial influencing parameters, namely, rotation speed (RS), tool transverse speed (TS), number of passes (NPS) and reinforcement fraction (RF) or weight percentage. Box Behnken design (BBD) with four input parameters and three levels of each parameter was used to design the experimental work, and analysis of variance (ANOVA) was used to check the acceptability of the developed model. Desirability function analysis (DFA) for a multiresponse optimization approach is integrated with response surface methodology (RSM). The individual desirability index (IDI) was calculated for each response, and a composite desirability index (CDI) was obtained. The optimal parametric settings were determined based on maximum CDI values. A confirmation test is also performed to compare the actual and predicted values of responses.

Findings

The relationship between input parameters and output responses (UTS, YS, and EL) was investigated using the Box-Behnken design (BBD). Silver nanoparticles (AgNPs) and nano-sized titanium dioxide (TiO2) enhanced the ultimate tensile strength and yield strength. It was observed that the inclusion of AgNPs led to an increase in ductility, while the increase in the weight fraction of TiO2 resulted in a decrease in ductility.

Practical implications

AZ91D/AgNPs/TiO2 hybrid composite finds enormous applications in biomedical implants, aerospace, sports and aerospace industries, especially where lightweight materials with high strength are critical.

Originality/value

In terms of optimum value through desirability, the experimental trials yield the following results: maximum value of UTS (318.369 MPa), maximum value of YS (200.120 MPa) and EL (7.610) at 1,021 rpm of RS, 70 mm/min of TS, 4 NPS and level 3 of RF.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 April 2020

Abd El-Wahab H., Farouk Abd El-Monem, Naser M.A., Hussain A.I., Elshhat H.A. Nashy and Lin L.

The purpose of this paper is devoted to application of the emulsion polymer of poly(methyl methacrylate-co-butyl acrylate) prepared with in situ nano-silica as a novel tanning…

Abstract

Purpose

The purpose of this paper is devoted to application of the emulsion polymer of poly(methyl methacrylate-co-butyl acrylate) prepared with in situ nano-silica as a novel tanning agent of hide to partly or totally replace chrome salt and to improve physical, thermal and mechanical properties of the tanned leather and to reduce the environmental impact of chrome tanning effluent.

Design/methodology/approach

Polymer/nano-silica hybrid emulsions were prepared via in situ seed emulsion polymerisation. The prepared polymers were characterised for solid content, molecular weight, viscosity, drying time, minimum film-forming temperature (MFFT) and microstructures (via transmission electron microscopy). The mechanical, thermal and surface morphological (by scanning electron microscope) properties of the treated samples were also investigated. The influences of the increase in the content of organic nano-silica on the properties of the tanned leather are discussed.

Findings

It was found that the viscosity, the particle size and the solid content of the prepared polymers increased as the content of the nano-silica increased while gloss and drying time of the resulting polymer film decreased. Tanning buffalo hide by Polymer F (containing a high content of nano-silica) gave desirable properties in terms of tensile strength, thermal stability and shrinkage temperature.

Research limitations/implications

This paper discusses the preparation and the characterisation of emulsion polymers with in situ nano-silica and their application in tanning process to enhance and improve the leather quality, as well as reduce the use of chrome tanning materials and consequently chrome tanning waste.

Practical implications

The tanned leather showed an improvement of physico-mechanical properties and enhancement of thermal stability. Furthermore, the tanned leather has uniform colour, softness and firmness of grain. All these promising results provide evidence to support the applicability of the prepared co-polymer/nano-silica emulsions as an efficient tanning agent that also provides lubricating properties for leather.

Originality/value

Since May 2015, REACH Annex XVII restricts Cr(VI) in leather articles or leather parts of articles that come into contact with skin to a concentration of less than 3 mg/kg. Cases of discovery of Cr(VI) in leather papers have been reported by the European rapid alert system on dangerous consumer products (RAPEX). The emulsion poly (methyl methacrylate-co-butyl acrylate) with in situ nano-silica that has been developed via the study reported in this paper is one of the better technologies for the reduction of chromium ratio used in tanning industry.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 June 2015

Amit Sharma, Manish Garg and Satnam Singh

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the…

Abstract

Purpose

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the wear resistance. An attempt is made to optimize the wear (weight loss) and coefficient of friction (COF) by considering three factors, i.e. normal load, track diameter and sliding speed which were varied at three different levels.

Design/methodology/approach

The effect of graphite and boron carbide on microhardness was studied by adding them in varying percentages. After determining the best combination of hybrid reinforcements, optimization of wear (weight loss) and COF was carried out at various levels of considered factors. Taguchi design of experiments was used using the software “Minitab 16.1”. ANOVA was used to analyze the effect of various parameters on wear and COF. To validate the results, mathematical modeling was carried out in terms of regression equations and results obtained by regression equations.

Findings

The results revealed that the lower weight percentage of graphite (3 per cent) and boron carbide (1 per cent) significantly improved microhardness of developed composites. Results of ANOVA revealed that normal load was the main contributing factor for wear and COF. The results obtained by regression equations and confirmatory tests were within the results obtained by ANOVA.

Originality/value

To the best of the author’s knowledge, very less work has been reported on optimization of wear and COF using hybrid reinforcement particles of graphite and boron carbide.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 310