Search results

1 – 10 of over 21000
Article
Publication date: 11 October 2011

Rabe Alsafadie, Mohammed Hjiaj, Hugues Somja and Jean‐Marc Battini

The purpose of this paper is to present eight local elasto‐plastic beam element formulations incorporated into the corotational framework for two‐noded three‐dimensional beams…

Abstract

Purpose

The purpose of this paper is to present eight local elasto‐plastic beam element formulations incorporated into the corotational framework for two‐noded three‐dimensional beams. These formulations capture the warping torsional effects of open cross‐sections and are suitable for the analysis of the nonlinear buckling and post‐buckling of thin‐walled frames with generic cross‐sections. The paper highlights the similarities and discrepancies between the different local element formulations. The primary goal of this study is to compare all the local element formulations in terms of accuracy, efficiency and CPU‐running time.

Design/methodology/approach

The definition of the corotational framework for a two‐noded three‐dimensional beam element is presented, based upon the works of Battini .The definitions of the local element kinematics and displacements shape functions are developed based on both Timoshenko and Bernoulli assumptions, and considering low‐order as well as higher‐order terms in the second‐order approximation of the Green‐Lagrange strains. Element forces interpolations and generalized stress resultant vectors are then presented for both mixed‐based Timoshenko and Bernoulli formulations. Subsequently, the local internal force vector and tangent stiffness matrix are derived using the principle of virtual work for displacement‐based elements and the two‐field Hellinger‐Reissner assumed stress variational principle for mixed‐based formulations, respectively. A full comparison and assessment of the different local element models are performed by means of several numerical examples.

Findings

In this study, it is shown that the higher order elements are more accurate than the low‐order ones, and that the use of the higher order mixed‐based Bernoulli element seems to require the least number of FEs to accurately model the structural behavior, and therefore allows some reduction of the CPU time compared to the other converged solutions; where a larger number of elements are needed to efficiently discretize the structure.

Originality/value

The paper reports computation times for each model in order to assess their relative efficiency. The effect of the numbers of Gauss points along the element length and within the cross‐section are also investigated.

Article
Publication date: 4 January 2016

Xiayu Zheng, Yuhua Wang and Dongfang Lu

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the…

179

Abstract

Purpose

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the development of novel elliptic cylinder matrices for high-gradient magnetic separation (HGMS).

Design/methodology/approach

The magnetic field distribution around the elliptic matrices is investigated quantitatively and the magnetic field and gradient were calculated. The motion equations of the magnetic particles around the matrices were derived and the particle capture cross-section of elliptic matrices was studied and was compared with that of the conventional circular matrices.

Findings

Elliptic matrices can present larger particle capture cross-section than the conventional circular matrices and can be a kind of promising matrices to be applied to HGMS.

Originality/value

There is little literature investigating the magnetic characteristics and the particle capture of the elliptic matrices in HGMS, the study is of great significance for the development of novel elliptic magnetic matrices in HGMS.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2005

X. Li, J. Wang and L.L. Shaw

To investigate the effect of laser densification parameters on the cross section geometry of the laser‐densified single line, and thus provide guidance for selecting the laser…

Abstract

Purpose

To investigate the effect of laser densification parameters on the cross section geometry of the laser‐densified single line, and thus provide guidance for selecting the laser processing condition to obtain dense shapes with minimum processing defects.

Design/methodology/approach

A range of dental porcelain powder lines with small cross section areas (in the order of 1 × 1 mm2) were extruded from micro‐extruders and laser densified with the systematically changed peak laser power intensity, laser beam diameter, and ratio of the laser beam diameter to the width of the powder line.

Findings

The peak laser power intensity, laser beam diameter, and ratio of the laser beam diameter to the width of the powder line have substantial influence on the cross section geometry. The effects of these laser processing parameters can be explained in terms of minimization of surface energy in both solid and liquid states, volume shrinkage associated with densification, and temperature gradients present in the powder line during laser densification.

Originality/value

For the first time the cross section geometry of single powder lines in response to laser processing conditions has been systematically investigated, and the result offers guidance for obtaining dense shapes with minimum processing defects.

Details

Rapid Prototyping Journal, vol. 11 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 October 2016

Aníbal J.J. Valido and João Barradas Cardoso

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These…

Abstract

Purpose

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section.

Design/methodology/approach

In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section.

Findings

The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables.

Originality/value

The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 May 2023

Jinbei Tian, Mohammed S. Ismail, Derek Ingham, Kevin J. Hughes, Lin Ma and Mohamed Pourkashanian

This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell.

Abstract

Purpose

This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell.

Design/methodology/approach

A comprehensive three-dimensional polymer electrolyte membrane fuel cell model has been developed, and a set of conservation equations has been solved. The flow is assumed to be steady, fully developed, laminar and isothermal. The investigated cross sections are the commonly used square cross section, the increasingly used trapezoidal cross section and a novel hybrid configuration where the cross section is square at the inlet and trapezoidal at the outlet.

Findings

The results show that a slight gain is obtained when using the hybrid configuration and this is because of increased velocity, which improves the supply of the reactant gases to the catalyst layers (CLs) and removes heat and excess water more effectively compared to other configurations. Further, the reduction of the outlet height of the hybrid configuration leads to even better fuel cell performance and this is again because of increased velocity in the flow channel.

Research limitations/implications

The data generated in this study will be highly valuable to engineers interested in studying the effect of fluid cross -sectional shape on fuel cell performance.

Originality/value

This study proposes a novel flow field with a variable cross section. This design can supply a higher amount of reactant gases to the CLs, dissipates heat and remove excess water more effectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2023

David Krybus, Marcus Achenbach and Livia Prifti

The paper aims to deal with the enhancement of a simplified method for the design of concrete columns subject to fire toward applications on circular and tubular cross-sections

Abstract

Purpose

The paper aims to deal with the enhancement of a simplified method for the design of concrete columns subject to fire toward applications on circular and tubular cross-sections. The original zone method, developed by Hertz as a plastic design method, has been extended by Achenbach for the use as a nonlinear method. This proposed extended zone method (EZM) is verified by checking the theoretical background and is successfully validated by the recalculation of laboratory tests.

Design/methodology/approach

The zone method assumes a reduction of a cross-section by a “damaged” zone. The remaining area is modeled with the constant, temperature-dependent material properties. The equations for the calculation of the damaged zone to model the loss of cross-section resistance or stiffness are derived. The proposed equations are validated by the recalculation of laboratory test and compared to the results of the advanced method (AM).

Findings

It can be shown that the EZM is suitable for the check of the fire resistance of circular concrete columns and leads to a safe and economic design. The method provides a suitable alternative to more sophisticated AM. The further extension toward tubular spun columns is discussed und is the object of the ongoing research.

Originality/value

Presented enhancement extends the range of applications of the EZMs toward circular and tubular cross sections, which has previously not been examined.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 June 2013

P. Ponnusamy

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using…

Abstract

Purpose

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using Fourier expansion collocation method (FECM).

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an electro‐magneto‐elastic plate of polygonal cross‐sections using the theory of elasticity. The frequency equations are obtained from the arbitrary cross‐sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the FECM is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of electro‐magneto‐elastic plate of polygonal cross‐sections have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of electro‐magneto‐elastic plates are based on the traditional circular cross‐sections only. So, in this paper, the wave propagation in electro‐magneto‐elastic plate of polygonal cross‐sections is studied using the FECM. The computed non‐dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed.

Originality/value

The researchers have discussed the circular, rectangular, triangular and square cross‐sectional plates by the boundary conditions. In this problem, the author studied the vibrations of polygonal (triangle, square, pentagon and hexagon) cross‐sectional plates using the geometrical relation which is applicable to all the cross‐sections. The problem may be extended to any kinds of cross‐sections by using the proper geometrical relations.

Article
Publication date: 7 March 2008

Boris Trogrlic and Ante Mihanovic

This paper aims to present a new numerical model for the stability and load‐bearing capacity computation of space reinforced‐concrete (R/C) frame structures. Both material and…

Abstract

Purpose

This paper aims to present a new numerical model for the stability and load‐bearing capacity computation of space reinforced‐concrete (R/C) frame structures. Both material and geometric nonlinearities are taken into account. The R/C cross‐sections are assumed to undergo limited distortion under torsional action.

Design/methodology/approach

A simple, global discretization using beam‐column finite elements is preferred to a full, global discretization using 3D elements. This is more acceptable from a practical point of view. The composite cross‐section is discretized using 2D elements to apply the fiber decomposition procedure to solve the material and geometrical nonlinear behavior of the cross‐section under biaxial moments and axial forces. A local discretization of each beam element based on the comparative body model (i.e. a prismatic body discretized using brick elements, element by element, during the incremental‐iterative procedure) allows determining the torsional constant of the cross‐section under limited warping. The classical global iterative‐incremental procedure is then used to solve the resulting material and geometric nonlinear problem.

Findings

It has been noticed that, in case of a limited distortion of the cross‐section, the torsional constant of homogeneous (linear elastic) materials is greater than the one obtained from the Saint‐Venant theory. However, due to low‐tensile strength of concrete materials, the torsional constant decreases significantly after an early loading phase, primarily due to the lack of reinforcing flanges.

Research limitations/implications

The current study does not cover the torsion analysis of R/C cross‐section with stirrups. Besides, the bond‐slip effect between concrete and steel reinforcement is not taken into account, nor is the local buckling of the beam flanges and rebar.

Practical implications

This new numerical model has been implemented in a computer program for effectively computing the nonlinear stability and load bearing capacity of space R/C frames.

Originality/value

The authors believe that the comparative body model should bring a new approach to the solution of torsion problems with limited distortion of cross‐sections in material and geometric nonlinear analysis of space R/C frames.

Details

Engineering Computations, vol. 25 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 21000