Search results

1 – 10 of 774
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 January 2012

Prashant M. Pawar, Sung Nam Jung and Babruvahan P. Ronge

The purpose of this paper is to develop an analytical approach to evaluate the influence of material uncertainties on cross‐sectional stiffness properties of thin walled composite…

Abstract

Purpose

The purpose of this paper is to develop an analytical approach to evaluate the influence of material uncertainties on cross‐sectional stiffness properties of thin walled composite beams.

Design/methodology/approach

Fuzzy arithmetic operators are used to modify the thin‐walled beam formulation, which was based on a mixed force and displacement method, and to obtain the uncertainty properties of the beam. The resulting model includes material uncertainties along with the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. The membership functions of material properties are introduced to model the uncertainties of material properties of composites and are determined based on the stochastic behaviors obtained from experimental studies.

Findings

It is observed from the numerical studies that the fuzzy membership function approach results in reliable representation of uncertainty quantification of thin walled composite beams. The propagation of uncertainties is also demonstrated in the estimation of structural responses of composite beams.

Originality/value

This work demonstrates the use of fuzzy approach to incorporate uncertainties in the responses analytically, in turn improving computational efficiency drastically as compared to the Monte‐Carlo method.

Article
Publication date: 1 March 1990

A.E. Kanarachos, N. Koutsidis and C.N. Spentzas

We present a combined or mixed method for the dynamic analysis of thin‐walled structures, based on the superposition of beam and shell strains and displacements. Polynomial or…

Abstract

We present a combined or mixed method for the dynamic analysis of thin‐walled structures, based on the superposition of beam and shell strains and displacements. Polynomial or exact shape functions are used for the interpolation of the shell displacements, while discrete degrees of freedom are introduced instead of the generalized von Karman coefficients. Special attention has been given to the integration schemes, because of the combined beam and shell behaviour of the considered structures. The stability and accuracy of the four‐point integration scheme are studied by using the z‐transform. The method is applied to thin‐walled pipes and is also compared to the von Karman approach.

Details

Engineering Computations, vol. 7 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 10 October 2016

Aníbal J.J. Valido and João Barradas Cardoso

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These…

Abstract

Purpose

The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section.

Design/methodology/approach

In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section.

Findings

The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables.

Originality/value

The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2021

Dragan D. Milašinović, Ljiljana Kozarić, Smilja Bursać, Miroslav Bešević, Ilija Miličić and Đerđ Varju

The purpose of this paper is to contribute to the solution of the buckling and resonance stability problems in inelastic beams and wooden plane trusses, taking into account…

Abstract

Purpose

The purpose of this paper is to contribute to the solution of the buckling and resonance stability problems in inelastic beams and wooden plane trusses, taking into account geometric and material defects.

Design/methodology/approach

Two sources of non-linearity are analyzed, namely the geometrical non-linearity due to geometrical imperfections and material non-linearity due to material defects. The load-bearing capacity is obtained by the rheological-dynamical analogy (RDA). The RDA inelastic theory is used in conjunction with the damage mechanics to analyze the softening behavior with the scalar damage variable for stiffness reduction. Based on the assumed damages in the wooden truss, the corresponding external masses are calculated in order to obtain the corresponding fundamental frequencies, which are compared with the measured ones.

Findings

RDA theory uses rheology and dynamics to determine the structures' response, those results in the post-buckling branch can then be compared by fracture mechanics. The RDA method uses the measured P and S wave velocities, as well as fundamental frequencies to find material properties at the limit point. The verification examples confirmed that the RDA theory is more suitable than other non-linear theories, as those proved to be overly complex in terms of their application to the real structures with geometrical and material defects.

Originality/value

The paper presents a novel method of solving the buckling and resonance stability problems in inelastic beams and wooden plane trusses with initial defects. The method is efficient as it provides explanations highlighting that an inelastic beam made of ductile material can break in any stage from brittle to extremely ductile, depending on the value of initial imperfections. The characterization of the internal friction and structural damping via the damping ratio is original and effective.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 March 2019

Mohammad Zaman Kabir and Mehdi Parvizi

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled

Abstract

Purpose

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled cold-formed steel channel and built-up I-sections beams. Built-up I section is made up of two back-to-back cold-formed channel beams. In this direction, at the primary stage, the roll-forming process of a channel section was simulated in ABAQUS environment and the accuracy of the result was verified with those existing experiments. Residual stresses and strains in both longitudinal and circumferential transverse directions were extracted and considered in the lateral-torsional buckling analysis under uniform end moments. The contribution of the current research is devoted to the numerical simulation of the rolling process in ABAQUS software enabling to restore the remaining stresses and strains for the buckling analysis in the identical software. The results showed that the residual stresses decrease considerably the lateral-torsional buckling strength as they have a major impact on short-span beams for channel sections and larger span for built-up I sections. The obtained moment capacity from the buckling analysis was compared to the predictions by American Iron and Steel Institute design code and it is found to be conservative.

Design/methodology/approach

This paper has explained a numerical study on the roll-forming process of a channel section and member moment capacities related to the lateral-torsional buckling of the rolled form channel and built-up I-sections beams under uniform bending about its major axis. It has also investigated the effects of residual stresses and strains on the behaviour of this buckling mode.

Findings

The residuals decrease the moment capacities of the channel beams and have major effect on shorter spans and also increase the local buckling strength of compression flange. But the residuals have major effect on larger spans for built-up I sections. It could be seen that the ratio of moment (with residuals and without residuals) for singly symmetric sections is more pronounced than doubly symmetric sections. So it is recommended to use doubly symmetric section of cold-formed section beams.

Originality/value

The incorporation of residual stresses and strains in the process of numerical simulation of rolled forming of cold-formed steel sections under end moments is the main contribution of the current work. The effect of residual stresses and strains on the lateral-torsional buckling is, for the first time, addressed in the paper.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Enrico Cestino and Giacomo Frulla

This study aims to analyse slender thin-walled anisotropic box-beams. Fiber-reinforced laminated composites could play an important role in the design of current and future…

Abstract

Purpose

This study aims to analyse slender thin-walled anisotropic box-beams. Fiber-reinforced laminated composites could play an important role in the design of current and future generations of innovative civil aircrafts and unconventional unmanned configurations. The tailoring characteristics of these composites not only improve the structural performance, and thus reduce the structural weight, but also allow possible material couplings to be made. Static and dynamic aeroelastic stability can be altered by these couplings. It is, therefore, necessary to use an accurate and computationally efficient beam model during the preliminary design phase.

Design/methodology/approach

A proper structural beam scheme, which is a modification of a previous first-level approximation scheme, has been adopted. The effect of local laminate stiffness has been investigated to check the possibility of extending the analytical approximation to different structural configurations. The equivalent stiffness has been evaluated for both the case of an isotropic configuration and for simple thin-walled laminated or stiffened sections by introducing classical thin-walled assumptions and the classical beam theory for an equivalent system. Coupling effects have also been included. The equivalent analytical and finite element beam behaviour has been determined and compared to validate the considered analytical stiffness relations that are useful in the preliminary design phase.

Findings

The work has analyzed different configurations and highlighted the effect of flexural/torsion couplings and a local stiffness effect on the global behaviour of the structure. Three types of configurations have been considered, namely, a composite wing box configuration, with and without coupling effects; a wing box configuration with sandwich and cellular constructions; and a wing box with stiffened panels in a coupled or an uncoupled configuration. An advanced aluminium experimental test sample has also been described in detail. Good agreement has been found between the theoretical and numerical analyses and the experimental tests, thus confirming the validity of the analytical relations.

Practical implications

The equivalent beam behaviour that has been determined and the stiffness calculation procedure that has been derived could be useful for future dynamic and aeroelastic analyses.

Originality/value

The article presents an original derivation of the sectional characteristics of a thin-walled composite beam and a numerical/experimental validation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 9 April 2018

Patryk Adam Jakubczak, Jaroslaw Bienias, Radoslaw Mania and Krzysztof Majerski

The purpose of the study was to develop the forming methodology for FML laminates with complex shapes, based on aluminium and epoxy-glass composite.

Abstract

Purpose

The purpose of the study was to develop the forming methodology for FML laminates with complex shapes, based on aluminium and epoxy-glass composite.

Design/methodology/approach

The subject of research encompassed Al/GFRP fibre metal laminates. Autoclave process has been selected for FML profiles production. The manufacturing process was followed by quality analysis for laminates produced.

Findings

The achievement of high stability and dimensional tolerance of thin-walled FML laminates is ensured by developed technology. The values of selected sections angles are significantly limited as a result of forming of FML laminates through the components performing. Failure to adhere to technological recommendations and to high regime of developer technology may lead to the occurrence of defects in FML.

Practical implications

Thin-walled composite structures could be applied in light-weight constructions, such as aircraft structures, which must meet rigorous requirements with regard to operation under complex load. The development of this type of technology may contribute to increased importance of FML sections in research area and finally to increased scope of their applications.

Originality/value

The production of thin-walled FML profiles with complex geometry, which would be characterized by dimensional stability and repeatable structural quality free of defects, is associated with many problems. No studies have been published so far on an effective forming process for FML laminates with complex shapes. Developed methodology has been verified through quality evaluation of produced profiles by means of non-destructive and destructive methods. The development of this type of technology may contribute to increased importance of FML, e.g. in aerospace technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2023

Nor Salwani Hashim, Fatimah De’nan and Nurfarhah Naaim

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural…

Abstract

Purpose

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural framing system that incorporates lightweight load-bearing walls and slabs, and to compare the weight of materials used in cold-formed and hot-finished steel structural systems for affordable housing.

Design/methodology/approach

Four types of models consisting of 243 members were simulated. Model 1 is a cold-formed steel structural framing system, while Model 2 is a hot-finished steel structural framing system. Both Models 1 and 2 use lightweight wall panels and lightweight composite slabs. Models 3 and 4 are made with brick walls and precast reinforced concrete systems, respectively. These structures use different wall and slab materials, namely, brick walls and precast reinforced concrete. The analysis includes bending behavior, buckling resistance, shear resistance and torsional rotation analysis.

Findings

This study found that using thinner steel sections can increase the deflection value. Meanwhile, increasing member length and the ratio of slenderness will decrease buckling resistance. As the applied load increases, buckling deformation also increases. Furthermore, decreasing shear area causes a reduction in shear resistance. Thicker sections and the use of lightweight materials can decrease the torsional rotation value.

Originality/value

The weight comparison of the steel structures shows that Model 1, which is a cold-formed steel structure with lightweight wall panels and lightweight composite slabs, is the most suitable model due to its lightweight and affordability for housing. This model can also be used as a reference for the optimal design of modular structural framing using cold-formed steel materials in the field of civil engineering and as a promotional tool.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 774