Search results

1 – 10 of 103
Article
Publication date: 12 April 2018

Rajendran Selvamani

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid…

Abstract

Purpose

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid using the Fourier expansion collocation method.

Design/methodology/approach

A mathematical model is developed for the analytical study on a transversely isotropic thermo-piezoelectric polygonal cross-sectional fiber immersed in fluid using a linear form of three-dimensional piezothermoelasticity theories. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the Fourier expansion collocation method (FECM) at the irregular boundary surfaces of the polygonal cross-sectional fiber. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is evident that the analytical formulation of thermo-piezoelectric interactions in a polygonal cross-sectional fiber contact with fluid is not discussed by any researchers. Also, in this study, a polygonal cross-section is used instead of the traditional circular cross-sections. So, the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid are studied using the FECM. The dispersion curves for non-dimensional frequency, phase velocity and attenuation coefficient are presented graphically for lead zirconate titanate (PZT-5A) material. The present analytical method obtained by the FECM is compared with the finite element method which shows a good agreement with present study.

Originality/value

This paper contributes the analytical model to find the solution of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid. The dispersion curves of the non-dimensional frequency, phase velocity and attenuation coefficient are more prominent in flexural modes. Also, the surrounding fluid on the various considered wave characteristics is more significant and dispersive in the hexagonal cross-sections. The aspect ratio (a/b) of polygonal cross-sections is critical to industry or other fields which require more flexibility in design of materials with arbitrary cross-sections.

Article
Publication date: 28 October 2013

M.T. Darvishi, R.S.R. Gorla and F. Khani

The purpose of this paper is to conduct a numerical study of the convection heat transfer in porous media by the homotopy analysis method (HAM). The geometry considered is that of…

Abstract

Purpose

The purpose of this paper is to conduct a numerical study of the convection heat transfer in porous media by the homotopy analysis method (HAM). The geometry considered is that of a rectangular profile fin. The porous fin allows the flow to infiltrate through it and solid-fluid interaction takes place. This study is performed using Darcy's model to formulate heat transfer equation. To study the thermal performance, three types of cases are considered namely long fin, finite length fin with insulated tip and finite length fin with tip exposed. The theory section addresses the derived governing equation. The effects of the porosity parameter Sh, radiation parameter G and temperature ratio CT on the dimensionless temperature distribution and heat transfer rate are discussed. The results suggest that the radiation transfers more heat than a similar model without radiation. The auxiliary parameter in the HAM is derived by using the averaged residual error concept which significantly reduces the computational time. The use of optimal auxiliary parameter provides a superior control on the convergence and accuracy of the analytic solution.

Design/methodology/approach

This study is performed using Darcy's model to formulate heat transfer equation. To study the thermal performance, three types of cases are considered namely long fin, finite length fin with insulated tip and finite length fin with tip exposed. The effects of the porosity parameter Sh, radiation parameter G and temperature ratio CT on the dimensionless temperature distribution and heat transfer rate are discussed.

Findings

The HAM has been successfully applied for the thermal performance of a porous fin of rectangular profile. Solutions are derived for three cases of tip condition: an infinitely long fin with tip in thermal equilibrium with the ambient, a finite fin with an insulated tip and a finite fin with a convective tip. The performance of the fin depends on three dimensionless parameters; porosity parameter Sh, radiation-conduction parameter G and a dimensionless temperature relating the ambient and base temperatures. The results show that the base heat flow increases when the permeability of the medium is high and/or when the buoyancy effect induced in the fluid is strong. The base heat flow is enhanced as the surface radiation or the tip Biot number increases.

Research limitations/implications

The analysis is made for the Darcy's model. Non-Darcy effects will be investigated in a future work.

Practical implications

The approach is useful in enhancing heat transfer rates.

Originality/value

The results of the study will be interested to the researchers of the field of heat exchanger designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

G. Sowmya, B.J. Gireesha and O.D. Makinde

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.

Design/methodology/approach

Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.

Findings

The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.

Originality/value

The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 January 2018

Mark Ho, Guan Heng Yeoh, John Arthur Reizes and Victoria Timchenko

Interface distinct two-phase computational fluid dynamics (CFD) simulations require accurate tracking in surface curvature, surface area and volume fraction data to precisely…

Abstract

Purpose

Interface distinct two-phase computational fluid dynamics (CFD) simulations require accurate tracking in surface curvature, surface area and volume fraction data to precisely calculate effects such as surface tension, interphase momentum and interphase heat and mass transfer exchanges. To attain a higher level of accuracy in two-phase flow CFD simulations, the intersection marker (ISM) method was developed. The ISM method has cell-by-cell remeshing capability that is volume conservative, maintains surface continuity and is suited for the tracking of interface deformation in transient two-phase flow simulations. Studies of isothermal single bubbles rising in quiescent water were carried out to test the ISM method for two-phase flow simulations.

Design/methodology/approach

The ISM method is a hybrid Lagrangian–Eulerian front tracking algorithm which can model an arbitrary three-dimensional surface within an array of cubic control volumes. Fortran95 was used to implement the ISM method, which resulted in approximately 25,000+ lines of written code and comments. To demonstrate the feasibility of the ISM algorithm for two-phase flow simulations, the ISM algorithm was coupled with an in-house CFD code, which was modified to simulate two-phase flows using a single fluid formulation. The constitutional equations incorporated terms of variable density and viscosity. In addition, body force source terms were included in the momentum equation to account for surface tension and buoyancy effects.

Findings

The performance of two-phase flow simulations was benchmarked against experimental data for four air/water bubbles with 1, 2.5, 5 and 10 mm of diameter rising in quiescent fluid. A variety of bubble sizes were tested to demonstrate the accuracy of the ISM interface tracking method. The results attained were in close agreement with experimental observations.

Practical implications

The results obtained show that the ISM method is a viable means for interface tracking of two-phase flow CFD simulations. Other applications of the ISM method include simulations of solid–fluid interaction and other immersed boundary flow problems.

Originality/value

The ISM method is a novel approach to front tracking, and the results shown are original in content.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1990

R.K. Singh, T. Kant and A. Kakodkar

This paper demonstrates the capability of staggered solution procedure for coupled fluid‐structure interaction problems. Three possible computational paths for coupled problems…

46

Abstract

This paper demonstrates the capability of staggered solution procedure for coupled fluid‐structure interaction problems. Three possible computational paths for coupled problems are described. These are critically examined for a variety of coupled problems with different types of mesh partitioning schemes. The results are compared with the reported results by continuum mechanics priority approach—a method which has been very popular until recently. Optimum computational paths and mesh partitionings for two field problems are indicated. Staggered solution procedure is shown to be quite effective when optimum path and partitionings are selected.

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1991

R.K. SINGH, T. KANT and A. KAKODKAR

Three‐dimensional transient analysis of a submerged cylindrical shell is presented. Three‐dimensional trilinear eight‐noded isoparametric fluid element with pressure variable as…

33

Abstract

Three‐dimensional transient analysis of a submerged cylindrical shell is presented. Three‐dimensional trilinear eight‐noded isoparametric fluid element with pressure variable as unknown is coupled to a nine‐noded degenerate shell element. Staggered solution scheme is shown to be very effective for this problem. This allows significant flexibility in selecting an explicit or implicit integrator to obtain the solution in an economical way. Three‐dimensional transient analysis of the coupled shell fluid problem demonstrates that inclusion of bending mode is very important for submerged tube design—a factor which has not received attention, since most of the reported results are based on simplified two‐dimensional plane strain analysis.

Details

Engineering Computations, vol. 8 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1987

Lorraine Olson

We compare potential‐based (ø‐U‐P0) and displacement‐based finite element methods for static analysis of contained fluids. A general transient formulation may be specialized to…

Abstract

We compare potential‐based (ø‐U‐P0) and displacement‐based finite element methods for static analysis of contained fluids. A general transient formulation may be specialized to static analysis in both cases. In the potential‐based method velocity potentials (ø) and a single pressure (P0) variable are the unknowns in the fluid region. Displacements are the unknowns in the fluid for displacement‐based methods. Higher‐order displace‐ment‐based elements may produce singular matrices for some static analyses, restricting us to four‐node elements for reliability. While both methods can yield excellent results when compared with experimental data, potential‐based methods appear to have computational advantages over displacement‐based methods.

Details

Engineering Computations, vol. 4 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 7 May 2020

Duzhou Zhang, Zhiguo Tian, Zhiqiang Chen, Dengyun Wu, Gang Zhou, Shaohua Zhang and Moran Wang

The purpose of this paper is to investigate the evolution of the permeability of spherical packing during cold compaction by pore-scale modeling.

Abstract

Purpose

The purpose of this paper is to investigate the evolution of the permeability of spherical packing during cold compaction by pore-scale modeling.

Design/methodology/approach

The discrete element method (DEM) is used to generate spherical packing structure under different compressive pressures and the Lattice Boltzmann method (LBM) is adopted to calculate the permeability of each spherical assembly.

Findings

It is found that the decrease of the porosity is the main reason of the reduction in permeability in the initial compression stage, but its influence becomes insufficient in the late compression stages. Besides, two empirical formulas are obtained, which describe the relation between the permeability and the equivalent mean diameter and the variation of normalized permeability with compressive pressure, respectively.

Research limitations/implications

In this study, the authors study the spherical particles and ignore the non-spherical effects. Besides, the classical contact model, the linear-spring-damping model, is used in DEM, so the plastic deformation cannot be considered.

Originality/value

The DEM and the LBM are well combined to study the compaction effects on permeability of spherical packing. Two simple expressions of the spherical packing structure with uniform diameter distribution are given for the first time.

Article
Publication date: 28 May 2021

M.R. Saber and M.H. Djavareshkian

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of…

Abstract

Purpose

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of the aerodynamic forces and the structural stiffness (fluid-structural interaction), a geometrical deformation as the bump is created in the area where the shock occurs. This bump causes instead of compressive waves, a series of expansion waves that produce less drag and also improve the aerodynamic performance to be formed. The purpose of this paper is to reduce wave drag throughout the flight range. By using this method, we can be more effective than recent methods throughout the flight because if there is a shock, a bump will form in that area, and if the shock does not occur, the shape of the airfoil will not change.

Design/methodology/approach

In this simulation pressure-based procedure to solve the Navier-Stokes equation with collocated finite volume formulation has been developed. For this purpose, a high-resolution scheme for fluid and structure simulation in transonic flows with an arbitrary Lagrangian-Eulerian method is considered. To simulate Navier-Stokes equations large eddy simulation model for compressible flow is used.

Findings

A new concept has been defined to reduce the transonic flow drag. To reduce drag force and increase the performance of airfoil in transonic flow, the shell can be considered flexible in the area of shock on the airfoil surface. This method refers to the use of smart materials in the aircraft wing shell.

Originality/value

The value of the paper is to develop a new approach to improve the aerodynamic performance and reduce drag force and the efficiency of the method throughout the flight. It is noticeable that the new algorithm can detect the shock region automatically; this point was disregarded in the previous studies. It is hoped that this research will open a door to significantly enhance transonic airfoil performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 103