Search results

1 – 10 of 270
Article
Publication date: 20 June 2024

Yang Chenglong and Kong Dejun

The aim of this study is to investigate the effects of Al2O3 mass fraction on the corrosive-wear and electrochemical performance of NiTi coating in 3.5% NaCl solution.

Abstract

Purpose

The aim of this study is to investigate the effects of Al2O3 mass fraction on the corrosive-wear and electrochemical performance of NiTi coating in 3.5% NaCl solution.

Design/methodology/approach

The NiTi–xAl2O3 coatings were fabricated on S355 steel by laser cladding, and their corrosive-wear and electrochemical performance were investigated using a wear tester and electrochemical workstation, respectively.

Findings

The wear rates of NiTi–5%Al2O3, –10%Al2O3 and –15%Al2O3 coatings are 82.33, 54.23 and 30.10 µm3 mm−1 N−1, respectively, showing that the wear resistance of NiTi–15%Al2O3 coating is the best. The wear mechanism is abrasive wear, which is attributed to the increase of coating hardness by the Al2O3 addition. The polarization resistance of NiTi–5%Al2O3, –10%Al2O3 and –15%Al2O3 coatings is 3,639, 5,125 and 10,024 O cm2, respectively, exhibiting that the NiTi–15% Al2O3 coating has the best corrosion resistance.

Originality/value

The roles of Al2O3 in the corrosive-wear and electrochemical performance of NiTi–xAl2O3 coating were revealed through the experimental investigation.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0044/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 May 2024

Min Li, Hangxuan Liu, Xingquan Zhang, Hengji Yang, Lisheng Zuo, Ziyu Wang, Shiwei Duan and Song Shu

The purpose of this paper is to investigate the effect of laser peening (LP) on mechanical and wear properties of 304 stainless steel sheet.

110

Abstract

Purpose

The purpose of this paper is to investigate the effect of laser peening (LP) on mechanical and wear properties of 304 stainless steel sheet.

Design/methodology/approach

Three-dimensional morphology, micro-hardness and micro-structure of shocked samples were tested. The wear amount, wear track morphology and wear mechanism were also characterized under dry sliding wear using Al2O3 ceramics ball.

Findings

The LP treatment generates deformation twins that contribute to the grain refinement and hardness increase. The wear test displays that the wear mechanism of samples is mainly abrasive wear and oxidation wear at 10 N load. While at 30 N, the delamination and adhesion areas of treated sample are reduced visibly compared to untreated ones.

Originality/value

This study specifically investigates the mechanical and wear properties of 304 stainless steel after the direct action of LP on its surface, which shows an effective improvement on the wear resistance. For example, the wear loss of processed sample is reduced by 19% at 30 N, the friction coefficient decreases from 0.4714 to 0.4308 and the groove depth is reduced from 78.1 to 74.4 µm under same condition.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0007/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 July 2024

Md Helal Miah, Dharmahinder Singh Chand, Gurmail Singh Malhi and Gongdong Wang

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to…

Abstract

Purpose

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to illustrate the titanium-based composite coating is created by laser cladding TC4+Ni60/hBN composite powder onto the surface of the TC4 alloy.

Design/methodology/approach

Different laser scanning speeds were initially selected to prepare TC4+Ni60/hBN titanium-based composite coating on the surface of TC4 alloy using RFL-C1000 Raycus fiber laser. Second, the cladding layers with different laser scanning speeds are composed of Ti2Ni, TiN0.3, TiC, TiB, α-Ti and other phases. Finally, precision balances, friction and wear testing machines were used to analyze and test the structure, phase, hardness, wear amount and friction coefficient of the composite coating and to study the effect of laser scanning speed on the microstructure and properties of the titanium-based composite coating.

Findings

It is evident that at the low laser scanning speed, the reinforcing phase agglomeration area is distributed in the substrate as a network. Increasing the laser scanning speed can reduce the cladding layer's friction coefficient and improve the cladding layer's hardness and wear resistance. But too high a laser scanning speed will cause defects such as pores and cracks in the cladding layer and also affect the cladding layer. The bonding performance of the layer and the substrate is optimal in this research at a laser scanning speed of 10 mm/s.

Originality/value

This research has practical value in improving the quality of surface treatment coating in modern aerospace and automotive companies.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 February 2023

Ripendeep Singh Sidhu, Gurmeet Singh and Harjot Singh Gill

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with…

Abstract

Purpose

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with various micro textures. The two different textures (prism and square) were created over the surfaces of both materials by using the 3D-printed technique.

Design/methodology/approach

The erosion experiments on both materials were performed by using Ducom Erosion Jet Tester. Erosion tests were performed at four different impacting velocities (15, 30, 45 and 60 m/s) with the four different particle sizes (17, 39, 63 97 µm) at the impact angles (30°–90°) for the time duration of 5, 10, 15 and 20 min. The two different textures prism and cone were used for performing the erosion experiments. Taguchi’s orthogonal L16 (mixed level) was used to reduce the number of experiments and to determine the impact of these parameters on erosion wear performance of both 3D-printed materials.

Findings

The PLA with cone texture was found to be best (against erosion) than the ABS cone and prism textures due to their high hardness (68 HV). Also, the average signal to noise (S/N) ratio for PLA and ABS was measured as 56.4 and 44.4 dB, respectively. As the value of the S/N ratio is inversely proportional to the erosion rate, the PLA has the least erosion rate as compared to the ABS. The sequence of erosion wear influencing parameters for both materials was in the following order: velocity > erodent size > texture > impact angle > time interval.

Originality/value

Both PLA and ABS with different micro textures for erosion testing were studied with Taguchi’s optimization method, and the erosion mechanisms are well analyzed by using scanning electron microscopy and Image J techniques.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 May 2024

Shengjian Zhang, Min Li, Baoyi Li, Hansen Zhao and Feng Wang

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Abstract

Purpose

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Design/methodology/approach

SiO2 nanoparticles modified by dodecyltrimethoxysilane (DTMS) were added to the PP and a superhydrophobic Mg(OH)2/PP-60mSiO2 composite coating was fabricated on the surface of AZ31 magnesium alloy via the hydrothermal method and subsequently the immersion treatment.

Findings

Hydrophilic SiO2 nanoparticles become hydrophobic after modified by DTMS, showing a higher dispersibility in xylene. By incorporating modified SiO2 nanoparticles into the composite PP coating, the hydrophobicity of the layer was enhanced, resulting in a contact angle of 166.3° and a sliding angle of 3.4°. It also improved the water repellency and durability of the coating. Furthermore, the intermediate layer of Mg(OH)2 significantly strengthened the bond between the PP layer and the substrate. The Mg(OH)2/PP-60mSiO2 composite coating significantly enhances the corrosion resistance of the magnesium alloy by effectively blocking the infiltration of the corrosion anions during corrosion. The corrosion current density of the Mg(OH)2/PP-60mSiO2 composite coating is approximately 8.23 × 10–9 A·cm-2, which can achieve a magnitude three times lower than its substrate, making it a promising surface modification for the Mg alloy.

Originality/value

The composite coating effectively and durably enhances the corrosion resistance of magnesium alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last 6 months (270)

Content type

Article (270)
1 – 10 of 270