Search results

1 – 10 of over 2000
Article
Publication date: 10 August 2018

Xiaodong Yu, Xu Zuo, Chao Liu, Xuhang Zheng, Hang Qu and Tengfei Yuan

Hydrostatic thrust bearing is a key component of the vertical CNC machining equipment, and often results in friction failure under the working condition of high speed and heavy…

Abstract

Purpose

Hydrostatic thrust bearing is a key component of the vertical CNC machining equipment, and often results in friction failure under the working condition of high speed and heavy load. The lubricating oil film becomes thin or breaks because of high speed and heavy load and it affects the high precision and stable operation of the vertical CNC machining equipment; hence, it is an effective way of avoiding friction failure for achieving the oil film shape prediction

Design/methodology/approach

For the hydrostatic thrust bearing with double rectangular cavities, researchers solve the deformation of the friction pairs in hydrostatic bearing by using the computation of hydrodynamics, elasticity theory, finite element method and fluid-thermal-mechanical coupled method. The deformation includes heat deformation and elasticity deformation, the shape of gap oil film is got according to the deformation of the friction pairs in hydrostatic bearing, and gets the shape of gap oil film, and determines the influencing factors and laws of the oil film shape, and achieves the prediction of oil film shape, and ascertains the mechanism of friction failure. An experimental verification is carried out.

Findings

Results show that the deformation of the rotational workbench is upturned along its radial direction under the working condition of high speed and heavy load. However, the deformation of the base is downturned along its radial direction and the deformation law of the gap oil film along the radius direction is estimated; the outer diameter is close but the inner diameter is divergent wedge.

Originality/value

The conclusion can provide a theoretical basis for the oil film control of hydrostatic thrust bearing and improve the stability of vertical CNC machining equipment.

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 December 2018

Amina Nemchi, Ahmed Bouzidane, Aboubakeur Benariba and Hicham Aboshighiba

The purpose of this paper is to study the influence of different flow regimes on the dynamic characteristics of four-pad hydrostatic squeeze film dampers (SFDs) loaded between…

Abstract

Purpose

The purpose of this paper is to study the influence of different flow regimes on the dynamic characteristics of four-pad hydrostatic squeeze film dampers (SFDs) loaded between pads.

Design/methodology/approach

A numerical model based on Constantinescu’s turbulent lubrication theory using the finite difference method has been developed and presented to study the effect of eccentricity ratio on the performance characteristics of four-pad hydrostatic SFDs under different flow regimes.

Findings

It was found that the influence of turbulent flow on the dimensionless damping of four-pad hydrostatic SFDs appears to be essentially controlled by the eccentricity ratio. It was also found that the laminar flow presents higher values of load capacity compared to bearings operating under turbulent flow conditions.

Originality/value

In fact, the results obtained show that the journal bearing performances are significantly influenced by the turbulent flow regime. The study is expected to be useful to bearing designers.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Xiao-dong Yu, Lei Geng, Xiao-jun Zheng, Zi-xuan Wang and Xiao-gang Wu

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this…

Abstract

Purpose

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity.

Design/methodology/approach

A mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted.

Findings

By increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available.

Originality/value

The load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.

Article
Publication date: 1 December 1957

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’…

Abstract

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’ of large clearance. Experiments involving flow visualization with very large clearance ratios of 0.05 to 0.3 show that the laminar regime gives way to cellular or ring vertices at the critical Reynolds number predicted by G. I. Taylor for concentric cylinders even in the presence of an axial flow and at a rather higher Reynolds number in the case of eccentric cylinders. The effect of the transition on the axial flow between the cylinders is small. The critical speed for transition as deduced by Taylor, is little affected by moderate axial flows and is increased by eccentricity. The effect of critical condition on the axial‐flow characteristics of the bearing system appears to be negligible, again for moderate axial flows. Assuming that the results can be extrapolated to clearances applicable to bearing operation, the main conclusion of this paper is that the breakdown of laminar flow, which is a practical possibility in very high‐speed bearings, is delayed by eccentric operation.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 8 June 2015

Qingrui Meng

– The purpose of this paper is to reveal the effect of starting time on hydro-viscous drive speed regulating start.

Abstract

Purpose

The purpose of this paper is to reveal the effect of starting time on hydro-viscous drive speed regulating start.

Design/methodology/approach

The modified transient Reynolds equation, thermal energy equation and temperature–viscosity equation were solved simultaneously by using finite element method. And then variations of the oil film load capacity, variations of temperature and variations of the torque generated by the oil film during the starting process were obtained.

Findings

The results show that during the starting process, both the oil film load capacity and the temperature show an upward trend, the torque increases during the beginning period and then decreases during the latter part of the starting process. When the starting time is less than 60 s, variations of the oil film load capacity and temperature show fluctuations, which decrease with the starting time. For any output speed, the corresponding oil film load capacity, temperature and torque decrease with the starting time, and the decreasing amplitude also decreases with the starting time.

Originality/value

This paper indicates that the starting time can be set to 60-90 s to obtain a perfect starting process. The simulation results are verified by the speed regulating start experiments. Research findings of this work provide theoretical basis for the design and practical application of the hydro-viscous drive equipments.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2018

Qingrui Meng, Zhao Chenghao and Tian Zuzhi

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the…

Abstract

Purpose

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the hydro-viscous drive speed regulating start device, studies on effect of torque ratio (a ratio of the load torque to the rated torque) on speed regulating start were carried out theoretically and experimentally.

Design/methodology/approach

Under different torque ratio, the modified Reynolds, the thermal energy and the viscosity-temperature equations were solved simultaneously by using finite element method to reveal variation laws of the oil film load capacity and torque transmission during the starting process. Then, speed regulating start experiments were carried out to study the following performance of the output speed.

Findings

The results show that oil film thickness decreases with the increase of the torque ratio; when oil film thickness is less than 0.05 mm, oil film temperature increases rapidly with the decrease of oil film thickness, which eventually deteriorates performance of the speed regulating start; when the torque ratio decreases to about 0.3, output speed shows a better following performance.

Originality/value

It indicates that, to acquire a better speed regulating start, the rated torque of the hydro-viscous drive speed regulating start device should not be less than three times of the load torque. Achievements of this work provide theoretical basis for optimal design of the friction pairs of the hydro-viscous drive speed regulating start device.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2019

Polychronis Spyridon Dellis

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect…

Abstract

Purpose

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect is that it alters the oil film pressure, generated at the converging-diverging wedge of the interface. Studies tried to shed light to the phenomenon of cavitation and compare it with cavities that have been identified in bearings. The paper aims to discuss this issue.

Design/methodology/approach

Lubricant formulations were used for parametric study of oil film thickness (OFT) and friction providing the OFT throughout the stroke and LIF for OFT point measurements. Lubricant formulation affects cavitation appearance and behaviour when fully developed.

Findings

Cavitation affects the ring load carrying capacity. Different forms of cavitation were identified and their shape and size (length and width) is dictated from reciprocating speed and viscosity of the lubricant. A clear picture is given from both techniques and friction results give quantifiable data in terms of the effect in wear and cavitation, depending on the lubricant properties.

Research limitations/implications

Engine results are limited due to manufacturing difficulties of visualisation windows and oil starvation. Therefore, full stroke length sized windows were not an option and motoring tests were implemented due to materials limitations (adhesive and quartz windows). Lubricant manufacturer has to give data regarding the chemistry of the lubricants.

Originality/value

The contribution of cavitation in piston-ring lubrication OFT, friction measurements and lubricant parameters that try to shed light to the different forms of cavitation. A link between viscosity, cavitation, shear thinning properties, OFT and friction is given.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 2000