Search results

1 – 10 of 39
Article
Publication date: 20 April 2015

Yexiang Xiao, Zhengwei Wang, Jidi Zeng, jintai Zheng, Jiayang Lin and Lanjin Zhang

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway…

Abstract

Purpose

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway when two floodgates are running.

Design/methodology/approach

The volume of fluid (VOF) method together with the Realizable k-ε turbulence model were used to predict the flow in two ski-jump jets and the free surface motion in a large dam spillway. The movements of the two gates were simulated using a dynamic mesh controlled by a User Defined Function (UDF). The simulations were run using the prototype dam as the field test to minimize errors due to scale effects. The simulation results are compared with field test observations.

Findings

The transient flow calculations, accurately predict the two gate discharges compared to field data with the predicted ski-jump jet interference flow pattern similar to the observed shapes. The transient simulations indicate that the main reason for the deflected nappe is the larger opening difference between the two gates as the buttress side gate closes. When both gates are running, the two ski-jump jets interfere in the flip bucket and raise the jet nappe to near the buttress to form a secondary flow on this jet nappe surface. As the gate continues to close, the nappe surface continues to rise and the surface secondary flow become stronger, which deflects the nappe over the side buttress.

Originality/value

A dynamic mesh is used to simulate the transient flow behavior of two prototype running gates. The transient flow simulation clarifies the hydraulics mechanism for how the two ski-jump jets interfere and deflect the nappe.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2015

Sadia Siddiqa, M. Anwar Hossain and Suvash C Saha

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow

Abstract

Purpose

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture.

Design/methodology/approach

The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate.

Findings

The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high.

Originality/value

The results of the study may be of some interest to the researchers of the field of chemical engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 December 2020

Benliang Xu, Zuchao Zhu, Zhe Lin and Dongrui Wang

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Abstract

Purpose

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Design/methodology/approach

In this paper, computational fluid dynamics discrete element method (CFD-DEM) simulation was conducted to study the solid–liquid two-phase flow characteristics and erosion characteristics of a butterfly valve with a different opening.

Findings

Abrasion at 10% opening is affected by high-speed jets in upper and lower parts of the pipeline, where the erosion is intense. The impact of the jet on the upper part of 20% opening begins to weaken. With the top backflow vortex disappearing, the effect of lower jet is enhanced. Meanwhile, the bottom backflow vortex phenomenon is obvious, and the abrasion position moves downward. At 30% opening, the velocity is further weakened, and the circulation effect of lower flow channel is more obvious than that of the upper one.

Originality/value

It is the first time to use DEM to investigate the two-phase flow and erosion characteristics at a small opening of a butterfly valve, considering the effect of inter-particle collision. Therefore, this study carries on the thorough analysis and discussion. At the same opening degree, with increasing of the particle size, the abrasion of valve frontal surface increases when the size is less than 150 µm and decreases when it is greater than 150 µm. For the valve backflow surface, this boundary value becomes 200 µm.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0264/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2018

Sam Ban, William Pao and Mohammad Shakir Nasif

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

3648

Abstract

Purpose

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

Design/methodology/approach

The abrupt change in gas/liquid velocities, which causes transition of flow patterns, was analyzed using incompressible volume of fluid method to capture the dynamic gas-liquid interface. The validity of present model and its methodology was validated using Baker’s flow regime chart for 3.15 inches diameter horizontal pipe and with existing experimental data to ensure its correctness.

Findings

The present paper proposes simplified correlations for liquid holdup and slug frequency by comparison with numerous existing models. The paper also identified correlations that can be used in operational oil and gas industry and several outlier models that may not be applicable.

Research limitations/implications

The correlation may be limited to the range of material properties used in this paper.

Practical implications

Numerically derived liquid holdup and holdup frequency agreed reasonably with the experimentally derived correlations.

Social implications

The models could be used to design pipeline and piping systems for oil and gas production.

Originality/value

The paper simulated all the seven flow regimes with superior results compared to existing methodology. New correlations derived numerically are compared to published experimental correlations to understand the difference between models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 1996

S. Olivella, A. Gens, J. Carrera and E.E. Alonso

Presents numerical aspects of the program CODE_BRIGHT, which is a simulator for COupled DEformation, BRIne, Gas and Heat transport problems. It solves the equations of mass and…

1266

Abstract

Presents numerical aspects of the program CODE_BRIGHT, which is a simulator for COupled DEformation, BRIne, Gas and Heat transport problems. It solves the equations of mass and energy balance and stress equilibrium and, originally, it was developed for saline media. The governing equations also include a set of constitutive laws and equilibrium conditions. The main peculiarities of saline media are in the dissolution/precipitation phenomena, presence of brine inclusions in the solid salt and creep deformation of the solid matrix.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

An Yu, Xianwu Luo, Dandan Yang and Jiajian Zhou

This paper aims to gain a clear understanding of the ventilated cavity evolution around an NACA0015 hydrofoil by using both experimental and numerical investigation.

Abstract

Purpose

This paper aims to gain a clear understanding of the ventilated cavity evolution around an NACA0015 hydrofoil by using both experimental and numerical investigation.

Design/methodology/approach

The bubble evolution around an NACA0015 hydrofoil with or without air injection was observed in a water tunnel, and the simulation was conducted using a modified turbulence model and homogeneous cavitation model.

Findings

The present simulation method can successfully predict the bubble evolutions around the NACA0015 hydrofoil with or without air injection. Air injection can alleviate the nature cavitation oscillation, and the suppression effect on nature cavitation depends on the air-entrant coefficient. It is confirmed that the air and vapor cavity have the same shedding frequency. It is seen that the air sheet closely attaches to the hydrofoil surface and is surrounded by the vapor sheet. Thus, the injected air promotes vapor growth and results in an increase in the cavity shedding frequency. Further, with a large air-entrant coefficient, the pressure fluctuation is suppressed completely.

Originality/value

The new simulation method is adopted to explore the mechanism of ventilated cavitation. The bubble evolutions with and without air injection have been comprehensively studied by experimental and numerical investigation. The effects of air injection on natural cavity oscillations and pressure fluctuations have been revealed in the present study.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab…

204

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Jonathan Núñez Aedo, Marcela A. Cruchaga and Mario A. Storti

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Abstract

Purpose

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Design/methodology/approach

A fluid–solid coupled algorithm is proposed to describe the motion of a rigid buoy under the effects of waves. The Navier–Stokes equations are solved with the open-source finite volume package Code Saturne, in which a free-surface capture technique and equations of motion for the solid are implemented. An ad hoc experiment on a laboratory scale is built. A buoy is placed into a tank partially filled with water; the tank is mounted into a shake table and subjected to controlled motion that promotes waves. The experiment allows for recording the evolution of the free surface at the control points using the ultrasonic sensors and the movement of the buoy by tracking the markers by postprocessing the recorded videos. The numerical results are validated by comparison with the experimental data.

Findings

The implemented free-surface technique, developed within the framework of the finite-volume method, is validated. The best-obtained agreement is for small amplitudes compatible with the waves evolving under deep-water conditions. Second, the algorithm proposed to describe rigid-body motion, including wave analysis, is validated. The numerical body motion and wave pattern satisfactorily matched the experimental data. The complete 3D proposed model can realistically describe buoy motions under the effects of stationary waves.

Originality/value

The novel aspects of this study encompass the implementation of a fluid–structure interaction strategy to describe rigid-body motion, including wave effects in a finite-volume context, and the reported free-surface and buoy position measurements from experiments. To the best of the authors’ knowledge, the numerical strategy, the validation of the computed results and the experimental data are all original contributions of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2023

Pravin Hindurao Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a…

Abstract

Purpose

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a parallel triangular finned tube array subjected to water cross flow.

Design/methodology/approach

The experiment was conducted on finned tube arrays with a fin height of 6 mm and fin density of 3 fins per inch (fpi) and 9 fpi. A dedicated setup has been developed to examine fluid elastic instability and vortex shedding. Nine parallel triangular tube arrays with a pitch to tube diameter ratio of 1.78 were considered. The plain tube arrays, coarse finned tube arrays and fine finned tube arrays each of steel, copper and aluminium materials were tested. Plain tube arrays were tested to compare the results of the finned tube arrays having an effective tube diameter same as that of the plain tube.

Findings

A significant effect of fin density and tube material with a variable mass damping parameter was observed on the instability threshold. In the parallel triangular finned tube array subjected to water cross flow, a delay in the instability threshold was observed with an increase in fin density. For steel and aluminium tube arrays, the natural frequency is 9.77 Hz and 10.38 Hz, which is close to each other, whereas natural frequency of the copper tubes is 7.40 Hz. The Connors’ stability constant K for steel and aluminium tube arrays is 4.78 and 4.87, respectively, whereas it is 5.76 for copper tube arrays, which increases considerably compared to aluminum and steel tube arrays. The existence of vortex shedding is confirmed by comparing experimental results with Owen’s hypothesis and the Strouhal number and Reynolds number relationship.

Originality/value

This paper’s results contribute to understand the effect of tube materials and fin density on fluid elastic instability threshold of finned tube arrays subjected to water cross flow.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 June 2017

Peng Du, Haibao Hu, Feng Ren and Dong Song

The maintenance of the air–water interface is crucial for the drag reduction on hydrophobic surfaces. But the air bubbles become unstable and even washed away under high speed flow

Abstract

Purpose

The maintenance of the air–water interface is crucial for the drag reduction on hydrophobic surfaces. But the air bubbles become unstable and even washed away under high speed flow, causing the failure of surface hydrophobicity. Thereby, this paper aims to understand the relations between bubble behaviors and surface properties, flow conditions and to discover new methods to maintain the air–water interface.

Design/methodology/approach

Bubble properties on hydrophobic surfaces were characterized using single-component multiphase lattice Boltzmann simulation. Three equations of state (EOSs), including the Peng–Robinson, Carnahan–Starling and modified Kaplun–Meshalkin EOSs, were incorporated to achieve high density ratios.

Findings

Both the static and dynamic properties of bubbles on hydrophobic surfaces were investigated and analyzed under different flow conditions, solid–liquid interactions and surface topology.

Originality/value

By revealing the properties of bubbles on hydrophobic surfaces, the effects of flow conditions and surface properties were characterized. The maintenance method of air–water interface can be proposed according to the bubble properties in the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 39