Search results

1 – 4 of 4
Article
Publication date: 20 April 2015

Yexiang Xiao, Zhengwei Wang, Jidi Zeng, jintai Zheng, Jiayang Lin and Lanjin Zhang

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway…

Abstract

Purpose

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway when two floodgates are running.

Design/methodology/approach

The volume of fluid (VOF) method together with the Realizable k-ε turbulence model were used to predict the flow in two ski-jump jets and the free surface motion in a large dam spillway. The movements of the two gates were simulated using a dynamic mesh controlled by a User Defined Function (UDF). The simulations were run using the prototype dam as the field test to minimize errors due to scale effects. The simulation results are compared with field test observations.

Findings

The transient flow calculations, accurately predict the two gate discharges compared to field data with the predicted ski-jump jet interference flow pattern similar to the observed shapes. The transient simulations indicate that the main reason for the deflected nappe is the larger opening difference between the two gates as the buttress side gate closes. When both gates are running, the two ski-jump jets interfere in the flip bucket and raise the jet nappe to near the buttress to form a secondary flow on this jet nappe surface. As the gate continues to close, the nappe surface continues to rise and the surface secondary flow become stronger, which deflects the nappe over the side buttress.

Originality/value

A dynamic mesh is used to simulate the transient flow behavior of two prototype running gates. The transient flow simulation clarifies the hydraulics mechanism for how the two ski-jump jets interfere and deflect the nappe.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 1978

It was a good Farnborough Show … for those who went to see the flying displays and the weather was a great consolation. But it was an unusual Farnborough in some respects, first…

Abstract

It was a good Farnborough Show … for those who went to see the flying displays and the weather was a great consolation. But it was an unusual Farnborough in some respects, first because of the good weather and this does bear repetition, and it does make such a difference to setting up the Show to its progress through the week and to the mood of the people there.

Details

Aircraft Engineering and Aerospace Technology, vol. 50 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 1982

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse…

Abstract

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse capabilities in control systems and precision components for the aerospace industry.

Details

Aircraft Engineering and Aerospace Technology, vol. 54 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 June 2017

Mete Koken, Ismail Aydin and Akis Sahin

High head gates are commonly used in hydropower plants for flow regulation and emergence closure. Hydrodynamic downpull can be a critical parameter in design of the lifting…

Abstract

Purpose

High head gates are commonly used in hydropower plants for flow regulation and emergence closure. Hydrodynamic downpull can be a critical parameter in design of the lifting mechanism. The purpose of this paper is to show that a simplified two-dimensional (2D) computational fluid dynamics solution can be used in the prediction of the downpull force on the gate lip by comparison of computed results to experimentally measured data.

Design/methodology/approach

In this study, ANSYS FLUENT CFD software was used to obtain 2D numerical solution for the flow field around a generic gate model located in a power intake structure which was previously used in an experimental study. Description of the flow domain, computational grid resolution, requirements on setting appropriate boundary conditions and methodology in describing downpull coefficient are discussed. Total number of 245 simulations for variable gate lip geometry and gate openings were run. The downpull coefficient evaluated from the computed pressure field as function of gate opening and lip angle are compared with the experimental results.

Findings

The computed downpull coefficient agrees well with the previous experimental results, except one gate with small lip angle where a separation bubble forms along the lip, which is responsible from this deviation. It is observed that three-dimensional (3D) effects are confined to the large gate openings where downpull is minimum or even reversed.

Research limitations/implications

In large gate openings, three dimensionality of the flow around gate slots plays an important role and departure from 2D solutions become more pronounced. In that case, one might need to perform a 3D solution instead.

Practical implications

This paper presents a very fast and accurate way to predict downpull force on high head gates in the absence of experimental data.

Originality/value

An extensive amount of simulations are run within the scope of this study. It is shown that knowing its limitations, 2D numerical models can be used to calculate downpull for a wide range of gate openings without the need of expensive experimental models.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 4 of 4