Search results

11 – 20 of 844
Article
Publication date: 17 March 2020

Akanksha Mishra, Nagesh Kumar G.V. and Sravana Kumar Bali

There is a worldwide need to amplify the usage of renewable energy in the manufacture of electrical energy. Thus, the integrated energy systems (IESs) have become a major part of…

Abstract

Purpose

There is a worldwide need to amplify the usage of renewable energy in the manufacture of electrical energy. Thus, the integrated energy systems (IESs) have become a major part of today’s power systems. Wind and solar energies are intermittent power sources and may lead to voltage and power flow instabilities. The purpose of this paper is to use the interline power flow controller (IPFC) for limiting the overloading of the transmission lines and improving the voltage stability of the IES.

Design/methodology/approach

This paper deals with an integrated system consisting of wind and solar energies and conventional systems. An appropriate position for the IPFC in the IES is proposed based on the disparity line utilization factor. The IPFC is then tuned for decreasing the loss of power and lessening the voltage deviation using the grey wolf algorithm.

Findings

The method is implemented on a modified IEEE 30-bus system. Results from the study show that the mega volt ampere (MVA) loading of the overloaded lines is reduced for the IES. Also, the voltage stability and the voltage profile of the system are improved to a major extent. The real and reactive power loss of the system is also brought down.

Originality/value

The use of renewable energy sources is a need of the present world to overcome environmental problems. This research focuses on the use of flexible AC transmission system (FACTS) devices with renewable sources incorporated in the power system. Very limited research has been done in this field. The IPFC, which is one of the most advanced FACTS device, is used for the study.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 March 2022

Hussein Mohammed Badr, Ramzy Salim Ali and Jawad Radhi Mahmood

In the vast majority of published papers, the optimal allocation of photovoltaic distributed generation (PVDG) units and reconfiguration problems are proposed along with the…

Abstract

Purpose

In the vast majority of published papers, the optimal allocation of photovoltaic distributed generation (PVDG) units and reconfiguration problems are proposed along with the number of PVDG used in the simulation. However, optimisation without selecting the number of PVDG units installed in the distribution grid is insufficient to achieve a better operational performance of power systems. Moreover, multi-objective installation of PVDG units and reconfiguration aims to simultaneously relieve congestion problems, improve voltage profile and minimise the active and reactive power losses. Therefore, this paper aims to propose a new modified camel algorithm (NMCA) to solve multi-objective problems considering radial distribution system to achieve secure and stable operation of electric power system with good performance.

Design/methodology/approach

In this paper, the decision variables include the location and size of PVDG units with specific rang to determine the number of PVDG units needed to install and open network lines determined using NMCA based on the L_∞ technique. This also satisfies the operating and radial constraints. Furthermore, a benchmark comparison with different well known optimisation algorithms has been made to confirm the solutions. Finally, an analysis of the findings was conducted, and the feasibility of solutions was fully verified and discussed.

Findings

Two test systems – the institute of electrical and electronics engineers (IEEE) 33-bus and IEEE 69-bus, were used to examine the accuracy and effectiveness of the proposed algorithm. The findings obtained amply proved the efficiency and superiority of the NMCA algorithm over the other different optimisation algorithms.

Originality/value

The proposed approach is applied to solve the installation PVDG unit’s problem and reconfiguration problem in the radial distribution system, satisfying the operating and radial constraints. Also, it minimises active and reactive power losses and improves voltage profile.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 June 2011

Sanjoy K. Parida, Suresh C. Srivastava and Sri N. Singh

The main purpose behind this work is to explore the methods already proposed in various literatures to overcome the issues associated with VAr management in a competitive…

913

Abstract

Purpose

The main purpose behind this work is to explore the methods already proposed in various literatures to overcome the issues associated with VAr management in a competitive environment. Managing reactive power support service in competitive electricity market environment has become an important constituent of ancillary services. The characteristics of VAr generation/absorption do not allow its transmission over a long distance. The issues associated with the localized nature of reactive power must be considered during the valuation, planning, pricing and allocation of VAr producing/absorbing resources. In this review work, the key issues associated with the reactive support and the techniques used to tackle these issues in various utilities across the globe are been discussed in brief. In the literature, numerous renowned authors propose various methods to manage reactive power with various types of structural and operational scenarios. These methods are also discussed briefly in this paper. The experience with VAr management in some matured electricity market is also discussed in this paper.

Design/methodology/approach

Discussion of various issues associated with reactive power management and methods/techniques to overcome these, has been carried out in this paper. The methods were proposed in various literatures related to reactive power management by some of the renowned authors and adopted by various electric utilities.

Findings

The review work may be useful for utilities to develop a quick insight on reactive support services to control the voltage profile and also, it may be a useful asset for the researchers working in this area.

Originality/value

The paper is organized with different sections to elaborate the issues and associated methods. This paper is a single piece of work, which addresses reactive power planning, pricing for VAr support, market issues and valuation of VAr utilization.

Details

International Journal of Energy Sector Management, vol. 5 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 17 May 2021

Subhashree Choudhury and Taraprasanna Dash

Static VAR compensators (SVC) have been recognized to be one of the most important flexible AC transmission systems devices used for mitigating the low-frequency electrochemical…

Abstract

Purpose

Static VAR compensators (SVC) have been recognized to be one of the most important flexible AC transmission systems devices used for mitigating the low-frequency electrochemical oscillations occurring in the system and for reactive power compensation, thereby improving the overall dynamic stability and efficiency of the system. The purpose of this paper is to optimize and dynamically tune the control parameters of the classical proportional integral and derivative (PID) controller of the SVC for a two-machine system by designing a new robust optimization technique.

Design/methodology/approach

The angular speed deviation between the two machines is used as an auxiliary signal to SVC for generation of the required damping output. To justify the efficacy of the system undertaken, a light load fault at time t =1 s is projected to the system. The simulation is carried out in MATLAB/Simulink architecture.

Findings

The proposed technique helps in the enhancement of system efficiency, reliability and controllability and by effectively responding to the non-linearities taking place in a power grid network. The results obtained are indicative of the fact that the proposed modified brain storming optimization (MBSO) technique reduces system disturbances very quickly, increases the system response in terms of better rise time, settling time and peak overshoot and improves the efficiency of the system.

Originality/value

A detailed comparison of the MBSO technique is compared with the conventional brain storming optimization (BSO) and PID technique. Total harmonic distortion through fast Fourier transform is also compiled to prove that the values of the proposed MBSO method found out to be confined well within the prescribed IEEE-514 boundaries.

Article
Publication date: 7 August 2019

Sarika Sharma and Smarajit Ghosh

This paper aims to develop a capacitor position in radial distribution networks with a specific end goal to enhance the voltage profile, diminish the genuine power misfortune and…

Abstract

Purpose

This paper aims to develop a capacitor position in radial distribution networks with a specific end goal to enhance the voltage profile, diminish the genuine power misfortune and accomplish temperate sparing. The issue of the capacitor situation in electric appropriation systems incorporates augmenting vitality and peak power loss by technique for capacitor establishments.

Design/methodology/approach

This paper proposes a novel strategy using rough thinking to pick reasonable applicant hubs in a dissemination structure for capacitor situation. Voltages and power loss reduction indices of distribution networks hubs are shown by fuzzy enrollment capacities.

Findings

A fuzzy expert system containing a course of action of heuristic rules is then used to ascertain the capacitor position appropriateness of each hub in the circulation structure. The sizing of capacitor is solved by using hybrid artificial bee colony–cuckoo search optimization.

Practical implications

Finally, a short-term load forecasting based on artificial neural network is evaluated for predicting the size of the capacitor for future loads. The proposed capacitor allocation is implemented on 69-node radial distribution network as well as 34-node radial distribution network and the results are evaluated.

Originality/value

Simulation results show that the proposed method has reduced the overall losses of the system compared with existing approaches.

Article
Publication date: 20 June 2019

Daniel Esene Okojie, Adisa Abdul-Ganiyu Jimoh, Yskandar Hamam and Adebayo Ademola Yusuff

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that…

Abstract

Purpose

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that does not ensure reliable dispatch of optimum power flow during outage contingency. The survey aims to enlarge the network capacity utilisation to rely on the entire transmission lines network operation.

Design/methodology/approach

The paper suggests transmission line switching (TLS) approach as a viable corrective mechanism for power dispatch. The TLS process is incorporated into a constraint programming language extension optimisation solver that selects the switchable line candidates as integer variables in the mixed integer programming problem.

Findings

The paper provides a practical awareness of reserve capacity in the lines that provide network security in outage contingency. At optimum power flow dispatch, the TLS is extended to optimal transmission line switching (OTLS) that indicates optimal capacity utilisation (OCU) of the available reserve capacity (ARC) in the network lines.

Practical implications

Computational efficiency influenced the extension of the OTLS to optimal transmission switching of power flow (OTSPF). The application of OTSPF helps reduce the use of flexible AC transmission systems (FACTS) and construction of new transmission lines..

Originality/value

The paper surveys TLS efforts in network capacity utilisation. The suggested ARC fulfils the need for an index with which the dispatchable lines may be identified for the optimal capacity utilisation of transmission lines network.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 September 2016

Naraina Avudayappan and S.N. Deepa

The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During…

227

Abstract

Purpose

The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices.

Design/methodology/approach

The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC.

Findings

The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature.

Research limitations/implications

With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines.

Practical implications

The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network.

Originality/value

This paper fulfills an identified need to study exaction of congestion management of the power line.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 2019

Narinder Kumar and Ashwani Kumar

The purpose of this paper is to analyze annual energy expenditure in the presence of non-linear load and substation voltage harmonics in distribution systems. Economic assessment…

Abstract

Purpose

The purpose of this paper is to analyze annual energy expenditure in the presence of non-linear load and substation voltage harmonics in distribution systems. Economic assessment of non-sinusoidal energy is a challenging task that involves complex computations of harmonic load powers and harmonic line losses.

Design/methodology/approach

The paper evaluates fundamental and non-sinusoidal components of electrical energy by applying backward/forward sweep technique in distorted distribution systems. This work involves harmonic power computations at the substation by including harmonic losses occurring in various lines of the distribution system.

Findings

The paper found that annual energy expenditure significantly depends upon the non-linear load, supply voltage harmonics and type of tariff structure considered in the distribution system. Impact of individual harmonic orders on the energy billing is also assessed.

Originality/value

The paper concludes that considering harmonic distortions in the distribution system analysis would help electricity regulators formulate adequate pricing structures, which would further generate appropriate economic signals for electricity utility and the consumers.

Details

International Journal of Energy Sector Management, vol. 13 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 5 June 2017

Janagaraman Radha, Srikrishna Subramanian, Sivarajan Ganesan and Manoharan Abirami

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear…

Abstract

Purpose

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear characteristics of generators and fuel limitation issues, which are useful for the current power system applications.

Design/methodology/approach

Improved control settings are required while considering multiple conflicting operational objectives that necessitate using the modern bio-inspired algorithm ant lion optimizer (ALO) as the main optimization tool. Fuzzy decision-making mechanism is incorporated in ALO to extract the best compromise solution (BCS) among set of non-dominated solutions.

Findings

The BCS records of IEEE-30 bus and JEAS-118 bus systems are updated in this work. Numerical simulation results comparison and comprehensive performance analysis justify the applicability of the intended algorithm to solve multi-objective dynamic optimal power flow (DOPF) problem over the state-of-art methods.

Originality/value

Optimal control settings are obtained for IEEE-30 and JEAS-118 bus systems with the objectives of minimizing fuel cost and emission in dynamic environment considering take-or-pay fuel contract issue. The fuzzy supported ALO (FSALO) is applied first time to solve the DOPF problem.

Details

International Journal of Energy Sector Management, vol. 11 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 January 2013

Javier Pereda and Juan Dixon

The aim of this paper is to improve and adapt cascaded multilevel converters for electric vehicles (EVs) to have all the advantages of these converters and to eliminate its…

Abstract

Purpose

The aim of this paper is to improve and adapt cascaded multilevel converters for electric vehicles (EVs) to have all the advantages of these converters and to eliminate its limitation in the use of EVs applications. Specifically, the purpose is to use only a single power source (battery pack, fuel cell, etc.) and to generate a higher power‐quality than regular multilevel converters.

Design/methodology/approach

This paper is based in a cascaded multilevel converter conformed by two 3‐level inverters connected in series. The voltage sources of the auxiliary inverter were replaced by floating capacitors which work as active filters, reducing the power sources to one. The floating capacitor voltages were controlled by a PI controller that adjusts the modulation index (m) to obtain a zero average power in the auxiliary inverters, and a predictive control selects the optimal redundant state to reduce the error and balance all the capacitor voltages. As the modulation index is determined by the PI controller, the output voltage magnitude must be controlled by a variable voltage source (e.g. buck‐boost chopper). Additionally, the converter works with new optimal voltage asymmetries to obtain higher power quality and capacitor control stability.

Findings

The proposed converter uses a topology that conventionally generates 9‐levels of voltage, but with the proposed asymmetry is as generate 11‐levels. Also, the auxiliary power sources were eliminated.

Research limitations/implications

The proposed solution has a limited dynamic response due to the variation rate of the capacitor voltage, which is limited by the load current and the capacitance. However, the dynamic response and control stability is satisfactory for EVs applications.

Originality/value

The paper presents a new control to manage the floating capacitor voltages and uses new voltage asymmetries in cascaded multilevel converters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

11 – 20 of 844