Search results

1 – 10 of 936
Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 July 2020

Majid M.A. Kadhim

This paper is aimed at clarifying the behaviour of concrete-filled stainless steel tube (CFSST) slender columns. Based on the review of previous works, it can be found that the…

Abstract

Purpose

This paper is aimed at clarifying the behaviour of concrete-filled stainless steel tube (CFSST) slender columns. Based on the review of previous works, it can be found that the pieces of research on the behaviour of CFSST slender columns are very rare and the existing studies, to the author’s knowledge, have not covered this topic in greater depth. The purpose of this paper is to investigate the structural response and strength capacity of eccentric loaded long CFSST columns.

Design/methodology/approach

In this paper, a new finite element (FE) model is presented for predicting the nonlinear behaviour of CFSST slender columns under eccentric load. The FE model developed accounts for confinement influences of the concrete in-filled material. In addition, the initial local and overall geometric imperfections were introduced in the numerical model in addition to the inelastic response of stainless steel. The interaction between the stainless section and concrete in-filled was modelled using contact pair algorithm. The FE model was then verified against an experimental work presented in the literature. The ultimate strengths, axial load–lateral displacement and failure mode of CFSST slender columns predicted by the FE model were validated against corresponding experimental results.

Findings

The simulation results show that the improvement in the column strengths (compared to hollow section) is less significant when the composite columns have small width-to-thickness ratio. Finally, comparisons were made between the results obtained from FE simulation and those computed from the Eurocode 4 (EC4). It has been found that the EC4 predictions in most analysed cases are conservative for composite columns analysed under a combination of axial load and uniaxial or biaxial bending. However, the conservatism of the code is reduced with a higher slenderness ratio of the composite columns.

Practical implications

The simulation results throughout this research were compared with the corresponding Eurocode predictions.

Originality/value

This paper provides new findings about the structural behaviour of CFSST columns.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 March 2022

Maher Taha El-Nimr, Ali Mohamed Basha, Mohamed Mohamed Abo-Raya and Mohamed Hamed Zakaria

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially…

Abstract

Purpose

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially more critical than in single-material models because of multiple reasons such as insufficient bonding strength between small-diameter steel bars and concrete, and excessive aggregate size. Overall, there is a shortfall of laboratory and field-testing studies on the behavior of secant pile walls under lateral and axial loads. Accordingly, the purpose of this study is to investigate the validity and the performance of the 1/10th scaled RC secant pile wall under the influence of different types of loading.

Design/methodology/approach

The structural performance of the examined models was evaluated using two types of tests: bending and axial compression. A self-compacting concrete mix was suggested, which provided the best concrete mix workability and appropriate compressive strength.

Findings

Under axial and bending loads, the failure modes were typical. Where the plain and reinforced concrete piles worked in tandem to support the load throughout the loading process, even when they failed. The experimental results were relatively consistent with some empirical equations for calculating the modulus of elasticity and critical buckling load. This confirmed the validity of the proposed model.

Originality/value

According to the analysis and verification of experimental tests, the proposed 1/10th scaled RC secant pile model can be used for future laboratory purposes, especially in the field of geotechnical engineering.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 February 2023

M. Vishal and K.S. Satyanarayanan

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying…

Abstract

Purpose

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying structural members of buildings. Under all circumstances, the columns and beams were set to be free from damage to avoid structural failure. Under the high-temperature scenario, the RC element may fail because of the material deterioration that occurs owing to the thermal effect. This study attempts to determine the optimum cover thickness for beams and columns under extreme loads and fire conditions.

Design/methodology/approach

Cover thicknesses of 30, 40, 45, 50, 60 and 70 mm for the columns and 10, 20, 25, 30, 35, 40, 50, 60 and 70 mm for the beams were adopted in this study. Both steady-state and transient-state conditions under thermomechanical analysis were performed using the finite element method to determine the heat transfer through the RC section and to determine the effect of thermal stresses.

Findings

The results show that the RC elements have a greater influence on the additional cover thickness at extreme temperatures and higher load ratios than at the service stages. The safe limits of the structural members were obtained under the combined effects of elevated temperatures and structural loads. The results also indicate that the compression members have a better thermal performance than the flexural members.

Research limitations/implications

Numerical investigations concerning the high-temperature behavior of structural elements are useful. The lack of an experimental setup encourages researchers to perform numerical investigations. In this study, the finite element models were validated with existing finite element models and experimental results.

Practical implications

The obtained safe limit for the structural members could help to understand their resistance to fire in a real-time scenario. From the safe limit, a suitable design can be preferred while designing the structural members. This could probably save the structure from collapse.

Originality/value

There is a lack of both numerical and experimental research works. In numerical modeling, the research works found in the literature had difficulties in developing a numerical model that satisfactorily represents the structural members under fire, not being able to adequately understand their behavior at high temperatures. None of them considered the influence of the cover thickness under extreme fire and loading conditions. In this paper, this influence was evaluated and discussed.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 October 2022

Sara Mirzabagheri and Osama (Sam) Salem

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity…

82

Abstract

Purpose

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity compared to other construction materials, its properties are changed at elevated temperatures. Most critically, the residual compressive strengths of reinforced concrete columns are significantly reduced after fire exposure. Validation of the worthiness of rehabilitating concrete structures after fire exposure is highly dependent on accurately determining the residual strengths of fire-damaged essential structural elements such as columns.

Design/methodology/approach

In this study, eight reinforced-concrete columns (200 × 200 × 1,500 mm) that were experimentally examined in a prior related study have been numerically modelled using ABAQUS software to investigate their residual compressive strengths after exposure to different durations of standard fire (i.e. one and two hours) while subjected to different applied load ratios (i.e. 20 and 40% of the compressive resistance of the column). Outcomes of the numerical simulations were verified against the prior study's experimental results.

Findings

In a subsequent phase, the results of a parametric study that has been completed as part of the current study to investigate the effects of the applied load ratios show that the application of axial load up to 80% of the compressive resistance of the column did not considerably influence the residual compressive strength of the shorter columns (i.e. 1,500 and 2,000-mm high). However, increasing the height of the column to 2,500 or 3,000 mm considerably reduced the residual compressive strength when the load ratio applied on the columns exceeded 60 and 40%, respectively. Also, when the different columns were simulated under two-hour standard fire exposure, the dominant failure was buckling rather than concrete crushing which was the typical failure mode in most columns.

Originality/value

The outcomes of the numerical study presented in this paper reflect the residual compressive strength of RC columns subjected to various applied load ratios and standard fire durations. Also, the parametric study conducted as part of this research on the effects of higher load ratios and greater column heights on the residual compressive strength of the fire-damaged columns is practical and efficient. The developed computer models can be beneficial to assist engineers in assessing the validity of rehabilitating concrete structures after being exposed to fire.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 May 2014

Christos Zeris, George Batis, Vassilios Mouloudakis and John Marakis

This paper aims to present results of an experimental investigation on a series of scaled reinforced concrete column elements which were subjected to chloride exposure under…

Abstract

Purpose

This paper aims to present results of an experimental investigation on a series of scaled reinforced concrete column elements which were subjected to chloride exposure under accelerated conditions under a concurrent service axial load, over a period. In the presence of an axial load, directed microcracks of increasing density and width are introduced in the concrete mass, depending on the axial load level. Such cracks are believed to enhance the intrusion rate of chlorides in the concrete, relative to what is obtained in the normally performed unloaded specimen tests.

Design/methodology/approach

Eighteen column specimens were tested over two chloride exposure periods, of duration up to a maximum of six months. Three different service axial load levels were considered, namely, none, 22 per cent and 43 per cent of the normalized axial load capacity of the columns.

Findings

The results indicate that the specimens loaded to the higher axial load, which closely resembles actual service situation of such type of elements, exhibited up to ten times faster rates of induced current flow under a constant applied voltage of 500 mV, compared to the unloaded and less loaded specimens.

Practical implications

It is proven that the presence of axial load influences the rate of chloride ingress in columns and, therefore, should be taken into account in estimating the concrete cover of such elements in durability design.

Originality/value

The influence of axial loading on corrosion rate has not been considered in published experimental and analytical studies of chloride ingression. These studies have typically so far considered the accelerated corrosion of unloaded column specimens.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 December 2022

Aishwarya Narang, Ravi Kumar and Amit Dhiman

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and…

Abstract

Purpose

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).

Design/methodology/approach

Concrete-filled steel tubular (CFST) columns have gained popularity in construction in recent decades as they offer the benefit of constituent materials and cost-effectiveness. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Gene Expression Programming (GEP) and Decision Trees (DTs) are some of the approaches that have been widely used in recent decades in structural engineering to construct predictive models, resulting in effective and accurate decision making. Despite the fact that there are numerous research studies on the various parameters that influence the axial compression capacity (ACC) of CFST columns, there is no systematic review of these Machine Learning methods.

Findings

The implications of a variety of structural characteristics on machine learning performance parameters are addressed and reviewed. The comparison analysis of current design codes and machine learning tools to predict the performance of CFST columns is summarized. The discussion results indicate that machine learning tools better understand complex datasets and intricate testing designs.

Originality/value

This study examines machine learning techniques for forecasting the axial bearing capacity of concrete-filled steel tubular (CFST) columns. This paper also highlights the drawbacks of utilizing existing techniques to build CFST columns, and the benefits of Machine Learning approaches over them. This article attempts to introduce beginners and experienced professionals to various research trajectories.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 March 2019

Geraldine Kikwasi and Elinorata Mbuya

There is evidence of increasing urban floods being aftermath of climate change. The purpose of this paper is to present findings-related analysis of vulnerability of building…

Abstract

Purpose

There is evidence of increasing urban floods being aftermath of climate change. The purpose of this paper is to present findings-related analysis of vulnerability of building structures in informal settlements to floods and associated coping strategies.

Design/methodology/approach

The study adopted a case study strategy, supported by field surveys and laboratory experiments. The informal settlement taken as case study is Sunna sub-ward. Field surveys involved interviews, questionnaires and observations and tests were conducted to determine the strength of walls, blocks and mortar.

Findings

The findings reveal that vulnerability of building structures to floods are due to poor quality of materials used in construction of houses which are influenced by income levels, location (lower areas of Sunna sub-ward) and inadequate storm water drainage system. Moreover, socio-economic vulnerabilities do exist in the settlements and are related to lack of peace of mind, outbreak of disease and expenses related to repairing of flood affected houses. Coping strategies used in the sub-ward for built structures are building barrier walls at the front door of the house and use multiple strategies which are supported by reactive and recovery strategies.

Research limitations/implications

The findings of this study were mostly affected by limited knowledge of respondents on construction materials and processes.

Practical implications

Findings of the paper provide an insight on the effects of climate change on building structures in informal settlements and coping strategies in place to protect buildings. The outputs can be used for any other informal settlement in Dar es Salaam the only limitation is the terrain.

Originality/value

The paper recommends use of quality building materials and technicians/artisans, improvement of surface water drainage and training of residents on the effects of climate change and variability. In addition, promising coping strategies should be adopted while those under-performing should be discouraged as they increase the cost burden among the urban poor.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 September 2011

Mostefa Mimoune, Fatima Mimoune and Mourad Youcef

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one…

Abstract

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one concrete composition and two lengths of columns. Thirteen columns were tested in axial compression. A comparison of experimental results with Algerian design codes DTR-DC, AIJ, DL/T and the empirical equations from the literature was performed. The analysis results for the thin tube show that the axial capacity in compression is underestimated by the DTR-DC. However, DL/T and AIJ codes are in agreement with test results. The results of empirical equations give different results depending on the length columns and section type.

Details

World Journal of Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 936