Search results

1 – 10 of 528
Article
Publication date: 1 September 1932

A.G. Pugsley

CERTAIN types of strut, when tested in compression, fail by twisting. In such cases the twisting occurs suddenly at some critical compressive load corresponding to the incidence…

Abstract

CERTAIN types of strut, when tested in compression, fail by twisting. In such cases the twisting occurs suddenly at some critical compressive load corresponding to the incidence of torsional instability. This kind of failure is found in tests of “thin” section struts, of angle or channel section, for example, and sometimes in tests of “open” section struts with lattice or other light bracing, and is ascribed to the low torsional stiffness of such struts. The failure is often accompanied by a distortion of the sectional shape of the strut due to some secondary instability of section, but attention is here directed to the primary torsional instability involved.

Details

Aircraft Engineering and Aerospace Technology, vol. 4 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 17 August 2021

Amit Chandra, Anjan Bhowmick and Ashutosh Bagchi

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake…

Abstract

Purpose

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake uniform and traveling fires (PEF). The primary objective is to investigate the effects of seismic residual deformation on the structure's performance in horizontally traveling fires. The traveling fire methodology, unlike conventional fire models, considers a spatially varying temperature environment.

Design/methodology/approach

Multi-step finite element simulations were carried out on undamaged and damaged frames to provide insight into the effects of the earthquake-initiated fires on the local and global behavior of SMRF. The earthquake simulations were conducted using nonlinear time history analysis, whereas the structure in the fire was investigated by sequential thermal-structural analysis procedure in ABAQUS. The frame was subjected to a suite of seven ground motions. In total, four horizontal traveling fire sizes were considered along with the Eurocode (EC) parametric fire for a comparison. The deformation history, axial force and moment variation in the critical beams and columns of affected compartments in the fire heating and cooling regimes were examined. The global structural performance in terms of inter-story drifts in FO and PEF scenarios was investigated.

Findings

It was observed that the larger traveling fires (25 and 48%) are more detrimental to the case study frame than the uniform EC parametric fire. Besides, no appreciable difference was observed in time and modes of failure of the structure in FO and PEF scenarios within the study's parameters.

Originality/value

The present study considers improved traveling fire methodology as an alternate design fire for the first time for the PEF performance of SMRF. The analysis results add to the much needed database on structures' performance in a wide range of fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 October 2012

Fotios Papadopoulos, Ioannis Valakos and Ioannis K. Nikolos

The purpose of this paper is to design an S‐duct intake for unmanned aerial vehicles (UAVs) applications with good efficiency in a wide range of operating conditions.

Abstract

Purpose

The purpose of this paper is to design an S‐duct intake for unmanned aerial vehicles (UAVs) applications with good efficiency in a wide range of operating conditions.

Design/methodology/approach

A fully‐parametric 3‐D CAD model of the intake was constructed in order to produce different intake configurations, within specific geometric constraints, and to study the influence of geometry variation on efficiency. O‐type blocking methodology was adopted in order to construct the block‐structured mesh of hexahedral elements, used in the simulations. The commercial CFD code ANSYS‐CFX was used to compute the flow field inside the flow domain of each case considered. The Reynolds averaged Navier‐Stokes (RANS) equations are discretized using an implicit, vertex‐based finite volume method, combined with the shear stress transport (SST) two‐equation turbulence model and an automatic wall treatment.

Findings

By shortening the axial length the flow separation after the first turning becomes more pronounced and the losses are increasing. For very long ducts the increased internal wall area leads to increased wall friction and, consequently, to increased loss production.

Originality/value

The adoption of Gerlach‐shaped profiles for the design of the S‐duct resulted in a low pressure loss level for the optimal shape, although more uniform distribution of total pressure losses resulted for ducts longer than the optimal one, which should be taken into account in the design process.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 October 2017

Chunxia Zhu, Jay Katupitiya and Jing Wang

Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The…

Abstract

Purpose

Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The purpose of this work is to analyze the effect of link deformation on the motion precision of parallel manipulators.

Design/methodology/approach

The flexible dynamics model of the links is first established by applying the Euler–Bernoulli beam theory and the assumed modal method. The rigid-flexible coupling equations of the parallel mechanism are further derived by using the Lagrange multiplier approach. The elastic energy resulting from spiral motion and link deformations are computed and analyzed. Motion errors of the 3-link torque-prismatic-torque parallel manipulator are then evaluated based on its inverse kinematics. The validation experiments are also conducted to verify the numerical results.

Findings

The lateral deformation and axial deformation are largest at the middle of the driven links. The axial deformation at the middle of the driven link is approximately one-tenth of the transversal deformation. However, the elastic potential energy of the transversal deformation is much smaller than the elastic force generated from axial deformation.

Practical implications

Knowledge on the relationship between link deformation and motion precision is useful in the design of parallel manipulators for high performing dynamic responses.

Originality/value

This work establishes the relationship between motion precision and the amount of link deformation in parallel manipulators.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 July 2019

Chang-Hoon Sim, Han-Il Kim, Jae-Sang Park and Keejoo Lee

The purpose of this paper is to derive knockdown factor functions in terms of a shell thickness ratio (i.e. the ratio of radius to thickness) for conventional orthogrid and…

Abstract

Purpose

The purpose of this paper is to derive knockdown factor functions in terms of a shell thickness ratio (i.e. the ratio of radius to thickness) for conventional orthogrid and hybrid-grid stiffened cylinders for the lightweight design of space launch vehicles.

Design/methodology/approach

The shell knockdown factors of grid-stiffened cylinders under axial compressive loads are derived numerically considering various shell thickness ratios. Two grid systems using stiffeners – conventional orthogrid and hybrid-grid systems – are used for the grid-stiffened cylinders. The hybrid-grid stiffened cylinder uses major and minor stiffeners having two different cross-sectional areas. For modeling grid-stiffened cylinders with various thickness ratios, the effective thickness (teff) of the cylinders is kept constant, and the radius of the cylinder is varied. Thickness ratios of 100, 192 and 300 are considered for the orthogrid stiffened cylinder, and 100, 160, 200 and 300 for the hybrid-grid stiffened cylinder. Postbuckling analyses of grid-stiffened cylinders are conducted using a commercial nonlinear finite element analysis code, ABAQUS, to derive the shell knockdown factor. The single perturbation load approach is applied to represent the geometrical initial imperfection of a cylinder. Knockdown factors are derived for both the conventional orthogrid and hybrid-grid stiffened cylinders for different shell thickness ratios. Knockdown factor functions in terms of shell thickness ratio are obtained by curve fitting with the derived shell knockdown factors for the two grid-stiffened cylinders.

Findings

For the two grid-stiffened cylinders, the derived shell knockdown factors are all higher than the previous NASA’s shell knockdown factors for various shell thickness ratios, ranging from 100 to 400. Therefore, the shell knockdown factors derived in this study may facilitate in the development of lightweight structures of space launch vehicles from the aspect of buckling design. For different shell thickness ratios of up to 500, the knockdown factor of the hybrid-grid stiffened cylinder is higher than that of the conventional orthogrid stiffened cylinder. Therefore, it is concluded that the hybrid-grid stiffened cylinder is more efficient than the conventional orthogrid-stiffened cylinder from the perspective of buckling design.

Practical implications

The obtained knockdown factor functions may provide the design criteria for lightweight cylindrical structures of space launch vehicles.

Originality/value

Derivation of shell knockdown factors of hybrid-grid stiffened cylinders considering various shell thickness ratios is attempted for the first time in this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 September 2011

Mostefa Mimoune, Fatima Mimoune and Mourad Youcef

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one…

Abstract

In this article, we present an analysis of the axial compression behavior of thin circular tube columns filled with concrete. Experimental study was conducted by using one concrete composition and two lengths of columns. Thirteen columns were tested in axial compression. A comparison of experimental results with Algerian design codes DTR-DC, AIJ, DL/T and the empirical equations from the literature was performed. The analysis results for the thin tube show that the axial capacity in compression is underestimated by the DTR-DC. However, DL/T and AIJ codes are in agreement with test results. The results of empirical equations give different results depending on the length columns and section type.

Details

World Journal of Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 1995

A. Moal and E. Massoni

A complete thermo‐mechanical model for the simulation of theinertia welding process of two similar parts is described. The materialbehaviour is represented by an incompressible…

Abstract

A complete thermo‐mechanical model for the simulation of the inertia welding process of two similar parts is described. The material behaviour is represented by an incompressible viscoplastic Norton—Hoff law in which the rheological parameters are dependent on temperature. The friction law was determined experimentally and depends on the prescribed pressure and the relative rotating velocity between the two parts. The mechanical problem is solved considering the virtual work principle including inertia terms. The computation of the three components of the velocity field such as radial, longitudinal and rotational velocity, in an axisymmetric approximation allows to take into account the torsional effects. The domain is updated based on a Lagrangian formulation. The non‐linear heat transfer equation with boundary conditions (convection, radiation and friction flux) is solved separately for each time step. Error estimators on mechanical and thermal computation are devised to adapt the mesh in an automatic way. Finally, numerical results concerning evolution of parts shape, strain, temperature, rotating velocity, upsetting are compared with actual industrial welds.

Details

Engineering Computations, vol. 12 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1999

Chiara Bisagni

The present investigation is oriented towards the design of an energy absorbing aluminium subfloor for a new Agusta helicopter. To identify the detailed design and the structural…

1244

Abstract

The present investigation is oriented towards the design of an energy absorbing aluminium subfloor for a new Agusta helicopter. To identify the detailed design and the structural concepts for the most efficient mechanism of energy absorption, the typical subfloor components have to be investigated. Design aspects focus in more detail on the subfloor structural intersections, because, under vertical crash loads, they can create high deceleration peak loads at the cabin floor level and cause dangerous inputs to the seat/occupant system. The crash behaviour and energy absorption capability of the subfloor structural intersections are investigated by experimental drop tests and finite element analyses. Presents the correlation between crash data and numerical results.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 July 2006

B.O. Al‐Bedoor, S. Aedwesi and Y. Al‐Nassar

The purpose of this paper is to validate mathematically the feasibility of extracting the rotating blades vibration condition from the shaft torsional vibration measurement.

1425

Abstract

Purpose

The purpose of this paper is to validate mathematically the feasibility of extracting the rotating blades vibration condition from the shaft torsional vibration measurement.

Design/methodology/approach

A mathematical model is developed and simulated for extracting rotating blades vibration signatures from the shaft torsional vibration signals. The model simulates n‐blades attached to a rigid disk at setting angles and the shaft drives the disk is flexible in torsion. The model is developed using the multi‐body dynamics approach in conjunction with the Lagrangian dynamics. A three‐blade rotor system example is simulated for blades free and forced vibration under stationary and rotating conditions. Frequency spectrums for the shaft torsional and blades bending vibration are represented and studied for analysis verification purposes.

Findings

The torsional vibration frequency spectrums showed blades free and forced vibration signatures. The blade setting angle is shown to reduce the sensitivity of torsional vibration signal to blades vibration signatures as it increases. The torsional vibration signals captured the variation in blades properties and produced broadband frequency components for mistuned system. The shaft torsional rigidity is shown to reduce the sensitivity of torsional vibration signal to blades vibration if increased to extremely high values (approaching rigid shaft). The rotor inertia is shown to have less effect on the torsional vibration signals sensitivity. The method of torsional vibration as a tool for rotating blades vibration measurement, based on the proposed mathematical model and its simulation, is feasible.

Practical implications

There is a growing need for reliable predictive maintenance programs that in turn requires continuous development in methods for machinery health monitoring through vibration data collection and analysis. Turbo machinery and bladed assemblies like fans, marine propellers and wind turbine systems usually suffer from the problem of blades high vibration that is difficult to measure. The proposed new method for blades vibration measurement depends on the shaft torsional vibration signals and can be used also for verifying the signals from other types of bearings sensors for possible blades vibration condition monitoring.

Originality/value

This paper presents a unique mathematical model and simulation results for the rotating blades vibration monitoring. The developed model can be simulated for studying coupled blades vibration problems in the design stage as well as for condition monitoring in maintenance applications.

Details

Journal of Quality in Maintenance Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 17 October 2017

Hélder Craveiro, João Paulo Correia Rodrigues and Luis Laim

The use of cold-formed steel members has increased significantly in the past few years; however, its design is only briefly addressed in the current design codes, such as the EN…

Abstract

Purpose

The use of cold-formed steel members has increased significantly in the past few years; however, its design is only briefly addressed in the current design codes, such as the EN 1993-1-3. To evaluate the compressive behavior of single and built-up cold-formed steel members, at ambient and simulated fire conditions with restrained thermal elongation, experimental and numerical tests were undertaken.

Design/methodology/approach

Four cross-section shapes were tested, namely, one single (lipped channel), one open built-up (I) and two closed built-up (R and 2R), considering two end support conditions, pinned and fixed. Two test set-ups were specifically developed for these tests. Based on the experimental results finite element models were developed and calibrated to allow future parametric studies.

Findings

This paper showed that increasing the level of restraint to thermal elongation and the initially applied load led to lower critical temperatures. Increasing the level of restraint to thermal elongation, the failure is governed by the generated axial restraining forces, whereas for lower levels of restraint to thermal elongation, the failure is controlled by the temperature increasing.

Originality/value

This paper is a contribution to the knowledge on the behavior of cold-formed steel columns subjected to fire, especially on the ones with a built-up cross-section, where results on thermal restrained ones are still scarce. It presented a set of experimental and numerical results useful for the development of numerical and analytical analysis concerning the development of new simplified calculation methods.

Details

Journal of Structural Fire Engineering, vol. 9 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 528