Search results

1 – 10 of over 2000
Article
Publication date: 29 February 2008

Damjana Celcar, Harriet Meinander and Jelka Geršak

The purpose of this study was to investigate the heat and moisture transmission through different types of textile materials or material combinations used for male business…

1409

Abstract

Purpose

The purpose of this study was to investigate the heat and moisture transmission through different types of textile materials or material combinations used for male business clothing.

Design/methodology/approach

In this study, eight different material combinations, which simulate four‐layer male business clothing system were tested using the sweating cylinder under two environmental conditions (10°C/65% RH and 25°C/65% RH), and at two sweating levels (100 and 200 gm−2h−1), in order to evaluate the heat and moisture transmission properties of material combinations.

Findings

The results show how combinations of clothing materials that simulate male business clothing system influence on the dry and evaporative heat loss between the cylinder surface and two different environment conditions as well as to different sweating levels.

Practical implications

The sweating cylinder can be used for measuring the heat and moisture transmission through clothing materials or material combinations in order to find out the best combination of textile materials, which simulate clothing system. Measured thermal comfort properties of material combinations evaluated with a sweating cylinder can provide valuable information for the textile and clothing industry by manufacturing/designing new textiles and clothing systems.

Originality/value

The paper investigated the heat and moisture transmission through combinations of clothing materials that simulate male business clothing system. In the past few years, clothing materials containing microencapsulated phase‐change materials (PCMs) have appeared in outdoor garments, particularly sportswear; therefore, we decided to investigate the combinations of standard used textile materials as well as of materials, containing PCMs, which simulate male business clothing system.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 June 2008

Damjana Celcar, Harriet Meinander and Jelka Geršak

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin…

2511

Abstract

Purpose

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin Coppelius that simulates heat and moisture production in a similar way to the human body and measures the influence of clothing on heat exchange in different environmental and sweating conditions.

Design/methodology/approach

Ten different combination of male business clothing systems were measured using the sweating manikin, under three environmental conditions (10°C/50 per cent RH, 25°C/50 per cent RH and −5°C), and at 0 and 50 gm−2 h−1 sweating levels, in order to evaluate the influence of environmental and sweating conditions on thermal comfort properties of clothing systems.

Findings

The results show how business clothing systems influence on the dry and evaporative heat loss between the manikin surface and environment in different environmental and sweating conditions.

Practical implications

When using sweating thermal manikin Coppelius, water vapour transmission (WVT) through and water condensation on the clothing can be determined simultaneously with the thermal insulation (It) of clothing system. Measured thermal comfort properties of clothing systems evaluated with a sweating thermal manikin can provide valuable information for the clothing industry by manufacturing/designing new clothing systems.

Originality/value

In this investigation, the heat and moisture transmission properties of male business clothing systems were measured in different environmental and sweating conditions. In the past few years, clothing materials containing microencapsulated phase‐change materials (PCMs) have appeared in outdoor garments, particularly sportswear; therefore, we decided to investigate the thermal comfort properties of different standard male business apparel, as well as male business clothing that contain PCMs used as liner and outerwear material.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 November 2015

Ming Fu, Wenguo Weng and Hongyong Yuan

– The purpose of this paper is to study the combined effects of moisture and radiation on thermal protective performance of protective clothing exposed to low level radiation.

Abstract

Purpose

The purpose of this paper is to study the combined effects of moisture and radiation on thermal protective performance of protective clothing exposed to low level radiation.

Design/methodology/approach

Using a sweating manikin, the effect of radiation and moisture on heat and moisture transfer was initially analyzed under the dry manikin with sweating rate of 100 g/(m2h) exposed to 2.5 kW/m2, and then studied at 200 and 300 g/(m2h) exposed to 2 and 3 kW/m2, respectively. Finally, the combined effects of thermal radiation and moisture were predicted by fitting the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity.

Findings

The results show that the heat loss and the wet skin surface temperature are affected by the combined effects of moisture and radiation, with two distinctly different trends. Heat loss from the manikin is increasing with the sweating rate, and decreasing with thermal radiation intensity. However, the wet skin surface temperature has an opposite situation.

Originality/value

Two filling equations are given to present the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity. With these two equations, the heat loss and the wet skin surface temperature when exposed to radiation can be predicted by only measuring the mean radiant and ambient temperatures and controlling the sweating rate.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 February 2013

Caroline J. Smith, Christiano A. Machado‐Moreira, Gijs Plant, Simon Hodder, George Havenith and Nigel A.S. Taylor

The purpose of this paper is to provide footwear designers, manikin builders and thermo‐physiological modellers with sweat distribution information for the human foot.

1042

Abstract

Purpose

The purpose of this paper is to provide footwear designers, manikin builders and thermo‐physiological modellers with sweat distribution information for the human foot.

Design/methodology/approach

Independent research from two laboratories, using different techniques, is brought together to describe sweat production of the foot. In total, 32 individuals were studied. One laboratory used running at two intensities in males and females, and measured sweat with absorbents placed inside the shoe. The other used ventilated sweat capsules on a passive, nude foot, with sweating evaluated during passive heating and incremental exercise to fatigue.

Findings

Results from both laboratories are in agreement. Males secreted more than twice the volume of sweat produced by the females (p<0.01) at the same relative work rate. Both genders demonstrated a non‐uniform sweat distribution, though this was less variable in females. Highest local sweat rates were observed from the medial ankles (p<0.01). The dorsal foot sweated substantially more than the plantar (sole) areas (p<0.01). Sweating on the plantar side of the foot was uniform. Wearing shoes limited the increase in sweat production with increasing load, while the sweat rate of uncovered feet kept increasing with work and thermal load.

Practical implications

The observed variation in sweat rate across the foot shows that footwear design should follow the body mapping principle. Fabrics and materials with different properties can be used to improve comfort if applied to different foot surfaces. The data also demonstrate that foot models, whether physical (manikins) or mathematical, need to incorporate the observed variation across the foot to provide realistic simulation/testing of footwear.

Originality/value

Details

International Journal of Clothing Science and Technology, vol. 25 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 April 2015

Simon Annaheim, Li-chu Wang, Agnieszka Psikuta, Matthew Patrick Morrissey, Martin Alois Camenzind and René Michel Rossi

The purpose of this paper is to determine the validity and inter-/intra-laboratory repeatability of the first part of a novel, three-phase experimental procedure using a sweating

Abstract

Purpose

The purpose of this paper is to determine the validity and inter-/intra-laboratory repeatability of the first part of a novel, three-phase experimental procedure using a sweating Torso device.

Design/methodology/approach

Results from a method comparison study (comparison with the industry-standard sweating guarded hotplate method) and an inter-laboratory comparison study are presented.

Findings

A high correlation was observed for thermal resistance in the method comparison study (r=0.97, p<0.01) as well as in the inter-laboratory comparison study (r=0.99, p<0.01).

Research limitations/implications

The authors conclude that the first phase of the standardised procedure for the sweating Torso provides reliable data for the determination of the dry thermal resistance of single and multi-layer textiles, and is therefore suitable as standard method to be used by different laboratories with this type of device. Further work is required to validate the applicability of the method for textiles with high thermal resistance.

Originality/value

This study provides the first “round-robin” data for measuring thermal resistance using a Torso device. In future publications the authors will provide similar data examining the repeatability of measurements that quantify combined heat and mass transfer.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 2006

Hiroyuki Ueda, Yoshimitsu Inoue, Mitsuo Matsudaira, Tsutomu Araki and George Havenith

The aim of this study is to explore the influence of the clothing ventilation in three body regions on the humidity of the local clothing microclimates under five work‐shirts…

1030

Abstract

Purpose

The aim of this study is to explore the influence of the clothing ventilation in three body regions on the humidity of the local clothing microclimates under five work‐shirts immediately after the onset of sweating in light exercise.

Design/methodology/approach

The clothing microclimate ventilations were measured at chest, back and upper arm using a manikin. Separate wear trials were performed to determine the sweat production and the humidity of the clothing microclimate at the same locations as where the ventilation was measured during light exercise.

Findings

Every shirt shows the greatest value of ventilation index (VI) for the chest and the smallest one for the upper arm. The values of VI differ remarkably at the chest among the five shirts. Comfort sensation became gradually worse as the time passed after starting exercise. There was no significant difference among the clothing conditions in mean values of rectal temperature, local skin temperatures, microclimate temperatures, microclimate relative humidities and local sweat rates at three regions over 10 min after the onset of sweating. A relationship was observed between the ratio of the mean moisture concentration in the clothing microclimate to the mean sweat rate at the chest and the back and the VI.

Originality/value

The results suggest that clothing ventilation should be measured in different body regions in response to sweat rates in corresponding regions.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 February 2008

Markus Weder, René M. Rossi, Cyril Chaigneau and Brice Tillmann

The purpose of this investigation is to measure seven different underwears on a sweating torso with differing relative air humidity (30, 50, 80 and 95 per cent RH) and at a fixed…

1113

Abstract

Purpose

The purpose of this investigation is to measure seven different underwears on a sweating torso with differing relative air humidity (30, 50, 80 and 95 per cent RH) and at a fixed ambient temperature of 30°C to determine the influence of the water vapour partial pressure of the environment on the moisture transport properties of various materials.

Design/methodology/approach

All measurements in this investigation were accomplished with the authors' sweating torso which simulates the thermal‐ and humidity release of the human body. Four different sweating rates (50, 75, 100 and 150 g/h*torso) were selected for this investigation.

Findings

It was established that the partial pressure difference did not correlate directly with the evaporative cooling. In general, higher evaporation rates were observed in the dry climate conditions. However, with low‐sweat rates, the highest relative humidity (95 per cent) generally resulted in greater evaporative cooling than the lowest surrounding humidity conditions (30 per cent). In this investigation, a blended fabric made of PES/Vinal exhibited the most efficient evaporative cooling for all the sweat rates, as well as for the four relative humidity conditions chosen.

Research limitations/implications

All received results are based on a surrounding temperature of 30°C (summer climate), for other temperatures the results may be different.

Originality/value

The investigation shows that both the relative humidity and the sweat rate have a major influence on the heat loss.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 December 2018

Zhongxiang Lei, Xiaoming Qian and Xianglong Zhang

The purpose of this paper is to assess the thermal protective performance of firefighter’s clothing by a sweating manikin in low-level radiation.

Abstract

Purpose

The purpose of this paper is to assess the thermal protective performance of firefighter’s clothing by a sweating manikin in low-level radiation.

Design/methodology/approach

A new method and a novel objective index based on measurements of the sweating thermal manikin are proposed to measure the thermal protection performance of firefighter’s clothing under low-level radiation exposure of 3.0 kW/m2. Finally, the effect of thermal insulation on thermal protective performance of firefighter’s clothing was analyzed.

Findings

The results reveal that the new index which used the changing rate of core temperature of the clothed manikin is a vital indicator of the thermal protection performance. Furthermore, the results demonstrated that there is a linear correlation between thermal protection performance of firefighter’s clothing and the thermal insulation.

Originality/value

A new method and a novel objective index are proposed to quantify the thermal protective performance of firefighter’s clothing in low-level radiation.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 December 2022

Agya Preet, Arunangshu Mukhopadhyay and Vinay Kumar Midha

Sweating is thermo-regulatory behaviour that occurs when a person performs vigorous activity even in cold climatic condition. One of important component of sweat is the presence…

Abstract

Purpose

Sweating is thermo-regulatory behaviour that occurs when a person performs vigorous activity even in cold climatic condition. One of important component of sweat is the presence of lactate. Based on climatic condition, age, gender, maturity and nature of activity level, the change in lactate concentration is inevitable. Hence, the present study is focussed on the impact of change in the lactate concentration on the moisture transmission behaviour through the clothing. The purpose of this paper is to investigate the impact of changing lactate concentration on the moisture vapour transmission behaviour through multi-layered clothing ensembles.

Design/methodology/approach

For the investigation, sweat solution representing male and female sweat were taken for present study. Two different multi-layered ensembles consisting of either spacer or fleece as middle layer were considered. The water vapour permeability and drying rate test were done at standard atmospheric conditions. After testing, ANOVA analysis was done in order to determine the most significant parameters.

Findings

Fabric structure (constituent layers) behaved differently when tested individually and as the layered component with different sweat solutions. Water vapour permeability of sweat solution with higher lactate concentration was lower as compared to sweat solution with lower lactate concentration. Individual layers showed higher rate of vapour permeability with sweat solution containing lower lactate concentration as compared to multi-layered ensembles. Role of PU coated nylon fabric was predominant in case of multi-layered ensembles. Difference in transmission of sweat solution was found higher in case of uni-directional stitched multi-layer spacer ensembles whereas marginal difference was observed in case of bi-directional seamed multi-layer spacer ensemble. Drying rate of sweat containing lower concentration of lactate was higher as compared to the other sweat solution for all the selected fabrics. Density of liquid and amount of the water available for drying influenced the drying behaviour and thus accounted for difference in drying rate of sweat solution differing in the lactate concentration. The contribution percentage of layers, i.e. type of structure was higher (nearly 93–96%) compared to that of solution type (3.3–4.9%) in case of individual layers whereas in the case of the multi-layer ensembles; type of seam had maximum contribution percentage (71–77%) followed by solution type (10–15%). Type of layers had least contribution percentage (nearly 7–9%).

Practical implications

The findings from the study are expected to be realistic and important in designing and development of cold weather garment ensemble for different gender type depending on their activity level especially in case of military personnel and those performing combat activities.

Originality/value

This experimental work based will provide the insight about the behaviour of actual sweat transmission through the layered fabric ensembles and ways to prevent the accumulation of moisture near to human skin surface by manufacturing suitable design structures (in terms of layering composition and seam patterns) per the morphology and requirement of specific consumers.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2002

Roger L. Barker

This paper traces the evolution of objective measurement of textile hand and comfort from Pierce through modern methodology and approaches. Special emphasis is given to discuss…

3678

Abstract

This paper traces the evolution of objective measurement of textile hand and comfort from Pierce through modern methodology and approaches. Special emphasis is given to discuss the contribution of the Kawabata Evaluation System (KES) towards advancing the state of objective measurement. Laboratory case studies are used to show how data generated by the KES and other instruments can be integrated into a comprehensive approach that attempts to explain human comfort response to garment wear in terms of fabric mechanical, surface and heat and moisture transfer properties.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 2000