Search results

1 – 10 of over 26000
Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft…

3743

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 May 2020

Gokcin Cinar, Elena Garcia and Dimitri N. Mavris

The purpose of this paper was to create a generic and flexible framework for the exploration, evaluation and side-by-side comparison of novel propulsion architectures. The intent…

Abstract

Purpose

The purpose of this paper was to create a generic and flexible framework for the exploration, evaluation and side-by-side comparison of novel propulsion architectures. The intent for these evaluations was to account for varying operation strategies and to support architectural design space decisions, at the conceptual design stages, rather than single-point design solutions.

Design/methodology/approach

To this end, main propulsion subsystems were categorized into energy, power and thrust sources. Two types of matrices, namely, the property and interdependency matrices, were created to describe the relationships and power flows among these sources. These matrices were used to define various electrified propulsion architectures, including, but not limited to, turboelectric, series-parallel and distributed electric propulsion configurations.

Findings

As a case study, the matrices were used to generate and operate the distributed electric propulsion architecture of NASA’s X-57 Mod IV aircraft concept. The mission performance results were acceptably close to the data obtained from the literature. Finally, the matrices were used to simulate the changes in the operation strategy under two motor failure scenarios to demonstrate the ease of use, rapidness and automation.

Originality/value

It was seen that this new framework enables rapid and analysis-based comparisons among unconventional propulsion architectures where solutions are driven by requirements.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2018

Susan Liscouet-Hanke, Arash Shafiei, Luiz Lopes and Sheldon Williamson

This paper aims to analyze the viability of a solar power system as a supplemental power source for commercial and business aircraft.

Abstract

Purpose

This paper aims to analyze the viability of a solar power system as a supplemental power source for commercial and business aircraft.

Design/methodology/approach

First, a model is established to estimate the potential available power from suitable aircraft surfaces for various meteorological conditions, ground and flight mission characteristics. A proposed aircraft system architecture and an associated parametric conceptual sizing model are presented. This supplemental solar power system sizing model is integrated into an aircraft multidisciplinary design optimization environment to evaluate the aircraft-level impact on mission fuel burn. A parametric study for a business jet aircraft is performed to analyze various solar cell types and power densities for converters. Trade-off studies are performed between efficiency and weight.

Findings

Considering today’s efficiency and power-to-weight ratio of the system components, overall fuel burn reduction can be achieved. Therefore, the technology development work can start now to target short to mid-term applications. In addition, promising system integration scenarios are identified, such as the use of solar power for autonomous operation of the air conditioning system on ground, which yield potential further benefit. In conclusion, a supplemental solar power system seems a promising candidate for more efficient aircraft operation.

Originality/value

The presented novel supplemental solar power system architecture concept and its foreseen aircraft integration show potential benefits for near term applications. The results show that the break even for this technology is already reached and therefore build the foundation to further investigate the technology integration challenges. Clear directions for future research and development are outlined enabling the advancement of the technology readiness level.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2022

K. M. Faridul Hasan, Haona Wang, Sakil Mahmud, Ashraful Islam, Md. Ahsan Habib and Cao Genyang

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an…

Abstract

Purpose

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an ecofriendly synthesis protocol. Human toxicity of silver systematically avoided to use as textile clothing. Primary colors (nearly-red, yellow and blue) were imparted on OCFs via localized surface plasmon resonance (LSPR) of AgNPs. Decent mechanical properties and laundering durability in terms of antibacterial/fastness test improved mechanical properties.

Design/methodology/approach

Silver nanoparticles can be synthesized by using silver nitrate along with commercially available chitosan. Due to the surface LSPR property of silver nanoparticles, it exhibits versatile colors depending on the synthesizing procedures. The coloration occurs due to the electrostatic interaction between the AgNPs and chitosan-treated OCF. The nanotreated fabrics provide excellent mechanical properties with improved antibacterial effects.

Findings

X-ray fluorescence (XRF) analysis quantifies the developed materials in the substrates. Scanning electron microscopy (SEM) characterization indicates the appearance and morphologies of silver nanoparticles into the fabric surface after the coloration process. It proves that the treated cotton knit fabric exhibits the LSPR optical features of AgNPs. The antibacterial and mechanical properties confirm the improved functionality of products.

Originality/value

Improved mechanical properties, antibacterial performances and coloration effects on organic cotton substrates in terms of chitosan-mediated nanosilver are not yet studied.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR…

1042

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2012

Juozas Padgurskas, Igoris Prosyčevas, Raimundas Rukuiža, Raimondas Kreivaitis and Artūras Kupčinskas

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Abstract

Purpose

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Design/methodology/approach

Fe and Fe+Cu nanoparticles were synthesized by a reduction modification method and added to mineral oil. The size and structure of prepared nanoparticles were characterized by SEM, TEM, XRF, AAS and XRD analysis. Tribological properties of modified lubricants were evaluated on a four‐ball machine in a model of sliding friction pairs.

Findings

Spectral and microscopy analysis evidently displayed the formation of Fe and Fe+Cu nanoparticles in suspensions of colloidal solutions and oil. The size of formed nanoparticles was in 15‐50 nm range. Tribological experiments show good lubricating properties of oils modified with Fe and Fe+Cu nanoparticles: higher wear resistance (55 per cent and 46 per cent accordingly) and lower friction coefficient (30 per cent and 26 per cent accordingly). The tests show that nanoparticles provide decreasing tendency of friction torque during the operation of friction pair.

Originality/value

The paper demonstrates that iron nanoparticles and iron nanoparticles coated with copper layer, not only reduce the wear and friction decrease of friction pairs, but possibly also can create layer in oil which separates two friction surfaces and have some self‐organisation properties.

Details

Industrial Lubrication and Tribology, vol. 64 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 October 2015

Michael Trachtengerts, Adilbek Erkimbaev, Vladimir Zitserman and Georgii Kobzev

The purpose of this paper is to reveal main advantages of digital libraries in comparison with technology of common database for data-oriented fields of modern science. As an…

779

Abstract

Purpose

The purpose of this paper is to reveal main advantages of digital libraries in comparison with technology of common database for data-oriented fields of modern science. As an example, the subject domain “nanomaterials and nanotechnologies” with new features due to evolution of concepts and objects is presented.

Design/methodology/approach

An analysis of the information system ABCD as a basis for science-oriented digital library was fulfilled. Also, a survey of peculiarities of data in fast developing fields of science was prepared.

Findings

The results of this paper showed that functional capacities of ABCD satisfy requirements for complex collections and archives of scientific documents. Based on the ABCD tools and this concept, the digital library for storage and systematization of data and documents on nanomaterials and nanotechnologies for the power engineering was constructed. The library combines opportunities of bibliographic, full text and factual information systems.

Originality/value

This paper gives the foundation for creation of a library that combines services of bibliographic, full text and factual (numerical) information systems. Some analyses of ABCD tools were made before elsewhere, but they did not point on data peculiarities of complexly organized domains: semi-structured data, multitude formats (text, image and tables), interconnection of content with external sources located on other servers or in the Web.

Details

The Electronic Library, vol. 33 no. 5
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 1 December 1996

Jonathan Salter, Martin Chaplin, John Dickerson and Jill Davies

Bile acids are usually related to biliary problems such as gallstones, but are in fact implicated in other diseases as well. Reviews bile acid formation in the body and its role…

2315

Abstract

Bile acids are usually related to biliary problems such as gallstones, but are in fact implicated in other diseases as well. Reviews bile acid formation in the body and its role in digestion. Discusses the concept that a diet involving fibre, particularly non‐starch polysaccharides, may be the key to health with respect to coronary heart disease and colon cancer, through interactions with the bile acids. Points out that this is not a new idea but one that still needs further investigation.

Details

Nutrition & Food Science, vol. 96 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Content available
Article
Publication date: 6 November 2009

144

Abstract

Details

Pigment & Resin Technology, vol. 38 no. 6
Type: Research Article
ISSN: 0369-9420

1 – 10 of over 26000