Search results

1 – 10 of 292
Article
Publication date: 6 June 2016

Demet Kucuk, Onur Balci and Mustafa Tutak

Nowadays, the usage of antibacterial textiles is very popular for different type of textiles. The silver (Ag) and zinc oxide (ZnO) are the most popular materials in order to…

Abstract

Purpose

Nowadays, the usage of antibacterial textiles is very popular for different type of textiles. The silver (Ag) and zinc oxide (ZnO) are the most popular materials in order to improve antibacterial properties of textiles. The purpose of this paper is to investigate the possibility to produce Ag nanoparticle (NP), ZnO NP, Ag/ZnO NP composite materials in this experimental study.

Design/methodology/approach

It was investigated whether it was possible to produce Ag NP, ZnO NP, Ag/ZnO NP composite materials by hydrothermal method which was known as in-situ approach on the fiber. In addition, the colloidal silver (Ag+) was produced by electrolysis method, and used instead of process water which was necessary during generating of NPs on the fiber by this method. After whole applications, the samples were characterized by SEM, XRD, EDX analyses and the antibacterial activity of specimens was tested according to the ASTM E 2149-01 (gram-negative Escherichia coli). In addition, the resistance to the repeated washes of these antibacterial samples was investigated.

Findings

The production of NPs on the fiber was achieved. The results showed that the samples had sufficient antibacterial activity and this activity did not reduce depending on repeated washing treatments.

Research limitations/implications

Because of usage of one type of fiber, it would be necessary to make researches on the different type of fiber, testing procedure (with different bacteria), washing replications and prescriptions.

Practical implications

During the process the temperature control is very important for the produced fiber. In addition chosen antibacterial test method is crucial for the testing of activity of product. Fiber must be washed at least once to remove unfixed NPs on the fiber.

Originality/value

The technical antibacterial polyester fiber was in-situ coated by hydrothermal method with Ag, ZnO, Ag/ZnO composite NPs.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2016

Mohammad-Reza Saffari and Reza Kamali Miab

The purpose of this paper is to: investigate coating of polylactic acid by TiO2 using low-temperature plasma technique, which is a clean and environmentally benign process; study…

Abstract

Purpose

The purpose of this paper is to: investigate coating of polylactic acid by TiO2 using low-temperature plasma technique, which is a clean and environmentally benign process; study the characteristics of the obtained samples; and survey the antibacterial effect of nano-TiO2. This method, as an eco-friendly technology used on the biodegradable polymer, would be benefited by industries which want to set feet on the greener path and reduce the social costs resulting from the harmful effects of pollutants.

Design/methodology/approach

TiO2 was coated on a textile by DC magnetron sputtering. In this study titanium as a pure Ti anode is coated on the sample surface in the plasma reactor by entering argon gas (Ar). Then titanium oxide appears through entering oxygen (O2) into the reactor.

Findings

Scanning electron microscopy analysis is applied to show the morphology of the coated surface. The quantitative value of TiO2 was evaluated as weight percentage using X-ray fluorescence (XRF) and washing stability of the samples is measured using the XRF machine. The highest degree of antibacterial effects and washing stability are all observed in 10 min.

Originality/value

In this process, contrary to common methods, pure Ti is used for coating. Finishing of textiles via this method has been useful to be used as disposable hospital clothing due to its biodegradable and antibacterial properties. So it will be helpful in reducing negative environmental impacts.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 2022

K. M. Faridul Hasan, Haona Wang, Sakil Mahmud, Ashraful Islam, Md. Ahsan Habib and Cao Genyang

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an…

Abstract

Purpose

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an ecofriendly synthesis protocol. Human toxicity of silver systematically avoided to use as textile clothing. Primary colors (nearly-red, yellow and blue) were imparted on OCFs via localized surface plasmon resonance (LSPR) of AgNPs. Decent mechanical properties and laundering durability in terms of antibacterial/fastness test improved mechanical properties.

Design/methodology/approach

Silver nanoparticles can be synthesized by using silver nitrate along with commercially available chitosan. Due to the surface LSPR property of silver nanoparticles, it exhibits versatile colors depending on the synthesizing procedures. The coloration occurs due to the electrostatic interaction between the AgNPs and chitosan-treated OCF. The nanotreated fabrics provide excellent mechanical properties with improved antibacterial effects.

Findings

X-ray fluorescence (XRF) analysis quantifies the developed materials in the substrates. Scanning electron microscopy (SEM) characterization indicates the appearance and morphologies of silver nanoparticles into the fabric surface after the coloration process. It proves that the treated cotton knit fabric exhibits the LSPR optical features of AgNPs. The antibacterial and mechanical properties confirm the improved functionality of products.

Originality/value

Improved mechanical properties, antibacterial performances and coloration effects on organic cotton substrates in terms of chitosan-mediated nanosilver are not yet studied.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 April 2023

Saima Habib, Farzana Kishwar, Zulfiqar Ali Raza and Sharjeel Abid

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for…

Abstract

Purpose

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for potential antibacterial surgical gown fabrication.

Design/methodology/approach

The nanosilver finish was reproduced using the chemical reduction method. The fabric dyeing was performed on a lab-scale dyeing machine, whereas silver nano-finishing through a pad-dry-cure approach. Citric acid was used as an eco-friendly crosslinker. The specimens were characterized for antibacterial activity, surface chemical, textile, color properties and finish release trend.

Findings

The results demonstrated the successful application of curcumin dye followed by silver nano-finishing. The resultant fabric exhibited appropriate textile, dyeing performance indicators, hydrophobic behavior and sustainable broad-spectrum antibacterial activity.

Practical implications

The prepared nanosilver-finished/curcumin-treated fabric expressed desirable properties for potential applications in the fabrication of surgical gowns.

Originality/value

The authors found no reports on an extensive examination of nanosilver finishing on the color parameters of curcumin-dyed cellulose fabric while retaining its textile and comfort properties for possible surgical gown fabrication.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 May 2020

Sergey Bereznenko, Natalia Bereznenko, Mykola Skyba, Dmytro Yakymchuk, Tetiana Artemenko, Dmytro Prybeha, Oleg Synyuk and Eugen Kalinsky

The purpose of this article is the development of up-to-date equipment for making nanocomposites for investigation of the antimicrobial properties of nanotextiles and the creation…

Abstract

Purpose

The purpose of this article is the development of up-to-date equipment for making nanocomposites for investigation of the antimicrobial properties of nanotextiles and the creation of a scientific base to choose materials of clothing with a special purpose.

Design/methodology/approach

Investigations are focussed on modifying the surface of textile materials by metal ions nanoparticles (AgJ, CuJ). The work of the equipment is based on the creation of metal nanocomposites in polyethyleneglycol (PEG). It is heated up to a temperature of not more than 130ºС, followed by adding the dispersion of metal in small portions to water. Nanoparticles are uniformly distributed on material surface that provides the improvement of its characteristics.

Findings

It has been found that modifying natural fibrous materials by nanoparticles of metal ions (AgJ, CuJ) promotes increasing their bactericidal and fungicidal properties with a comparison with traditional cotton materials. Microbiological investigations of antimicrobial properties of the cotton fabric have been conducted according to their effects on staphylococcus bacteria, E. coli and fungi.

Research limitations/implications

This research is limited to cotton fabrics. Therefore, other fabric types can be investigated to expand the data basis in the future.

Practical implications

The main practical point of developed equipment is that it can be used for obtaining bactericidal and fungicidal properties of natural and fibrous materials modified by nanoparticles of metal ions (AgJ, CuJ). That provides new characteristics of textile materials that can be used in the future for special clothing tailoring.

Social implications

The use of engineering equipment will allow in perspective to produce clothes with bactericidal and fungicidal properties, which can improve people’s lives through the prism of health and finished product quality.

Originality/value

Special equipment for investigation of antimicrobial properties of nanomodified textile materials of different kinds has been engineered, and there is an opportunity to create materials with antibacterial and antifungal properties. The application of this equipment provides the receiving of new characteristics for textile materials with silver ions nanoparticles. Such properties of nanomodified materials are useful for human health and can be used in the production of various textile products.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 April 2023

Bekinew Kitaw Dejene and Tsige Mamo Geletaw

The textile industry is evolving toward nanotechnology, which provides materials with self-cleaning properties. This paper aims to provide a thorough explanation of the green…

Abstract

Purpose

The textile industry is evolving toward nanotechnology, which provides materials with self-cleaning properties. This paper aims to provide a thorough explanation of the green synthesis and mechanism of ZnO nanoparticles, with prospective applications of zinc oxide nanoparticles (ZnO NPs) in self-cleaning textiles.

Design/methodology/approach

This review introduces a green mechanism for the synthesis of ZnO NPs using plant extracts, their self-cleaning properties and the mechanisms of physical, chemical and biological self-cleaning actions for textile applications.

Findings

ZnO NPs are among the several nanoparticles that are beneficial for self-cleaning textiles because of their exceptional physical and chemical properties, although review publications addressing the use of ZnO NPs in textiles for self-cleaning are uncommon. These results indicate that the plant-synthesized ZnO NPs display excellent biological, physical and chemical self-cleaning properties, the mechanism of which involves photocatalysis, surface roughness and interactions between ZnO NPs and bacterial surfaces.

Originality/value

Nanoformulations of plant-synthesized ZnO have been reviewed to achieve promising self-cleaning textile properties and have not been reviewed earlier.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 May 2015

Mustafa Tutak and Özlem Bilget

– This paper aims to evaluate the antibacterial properties of pigment printed fabric loaded with nano-sized silver and zinc.

Abstract

Purpose

This paper aims to evaluate the antibacterial properties of pigment printed fabric loaded with nano-sized silver and zinc.

Design/methodology/approach

The pigment printing paste was mixed with nano-sized silver/zinc particles and applied to the cotton fabrics by the hand screen-printing technique. The nano-sized particles, distribution on the fabric surface, were analysed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The ASTM E2149-01 test method was used to determine the bacteriodynamic activity of the treated fabrics. The wash and light fastness properties of the treated fabrics were investigated.

Findings

The experimental results of the study showed that antibacterial properties could be obtained by loading with nano-size silver/zinc particles on pigment printed cotton fabrics. There is no negative or positive effect of the addition of nano silver/zinc particles to the printing paste on fastness properties.

Research limitations/implications

The nano-sized metal particles and pigment printing paste should be well mixed to achieve uniform distribution on the printed surface.

Practical implications

The described process marks the introduction of a nano-technological aspect to pigment printing by its application to cotton fabrics.

Originality/value

The novelty/originality of the study lies in the new application process of nano-size silver/zinc particles to the textile pigment printing for antibacterial properties.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 April 2021

Gemeda Gebino, Gezu Ketema, Adina Fenta, Gideon Kipchirchir Rotich and Ayalew Debebe

The purpose of this study was to evaluate the extract of Moringa stenopetala seed oil, by organic solvents (methanol and hexane), for its efficacy against microbial activity on…

Abstract

Purpose

The purpose of this study was to evaluate the extract of Moringa stenopetala seed oil, by organic solvents (methanol and hexane), for its efficacy against microbial activity on cotton fabrics. The selected microbes for the study were two types of bacteria which are Gram-positive (S. aureus) and Gram-negative (E. coli).

Design/methodology/approach

Two types of bacteria, Gram-positive (S. aureus) and Gram-negative (E. coli) were used. The extract was applied on fabrics at a concentration of 5, 10 and 15 g/L using the pad-dry-cure method and antibacterial activities verified by the bacterial-growth reduction method. The treated fabrics were evaluated for antimicrobial activity against the bacteria before and after 15 washing cycles. The extract was examined for molecular structural change using fourier transform infrared spectroscopy (FTIR) and physical properties of the fabric; tensile strength, elongation, air permeability, stiffness and wettability were evaluated.

Findings

Results showed treated fabrics reduces the growth of Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria from 77.6%–100% before wash and 45.8%–85.2% after wash for both extract concentrations. Comparing extracts, hexane extract reduces all bacteria growth than methanol extract for both extract concentrations while S. aureus was more susceptible to antimicrobial agents than E. coli at a lower concentration. As result, the tensile strength and air permeability were relatively lower than untreated ones without affecting the comfort properties of the fabric.

Originality/value

This study indicates that the Moringa stenopetala seed oil extract has a strong antimicrobial activity.

Details

Research Journal of Textile and Apparel, vol. 25 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 September 2019

Amerah Al-Soliemy and Fatimah Al-Zahrani

This study aims to synthesize some new curcumin containing Aroyl derivatives dyestuffs and study their application in dyeing polyester fabrics, rendering to their antibacterial

Abstract

Purpose

This study aims to synthesize some new curcumin containing Aroyl derivatives dyestuffs and study their application in dyeing polyester fabrics, rendering to their antibacterial evaluation.

Design/methodology/approach

Modification of curcumin dye was carried out by introducing benzoyl rings through coupling with curcumin. All newly synthesized dyes were characterized by elemental analyses and spectral data (IR, 1 H-NMR and MS). Moreover, the optimal dyeing condition was assigned. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staph aureus) and gram-negative (Salmonellatyphimurium) bacteria.

Findings

Synthesized curcumin containing benzoyl dyes were applied on polyester fabrics. Meanwhile, these synthesized dyes showed reasonable results towards fastness properties at optimal conditions matching the curcumin dye. In addition to their good fastness assets, synthesized dyes displayed antibacterial efficacy towards both gram positive and gram-negative bacteria. The dyed polyester fabrics showed higher antibacterial efficacy after multiple events of washing.

Research limitations/implications

The synthesized benzoyl containing curcumin moiety was not described before.

Practical implications

Disperse dyes derived from curcumin were prepared via coupling of various diazonium salts of p-aminobenzaldhyde, p-aminoacetopheneone, p-aminobenzoic acid and p-aminobenzoyl chloride with curcumin. The resulting disperse dyes were applied on polyester fabrics at optimal conditions, and antibacterial efficacy of dyed fabrics were evaluated.

Originality/value

Curcumin being was used in food colouration and was effective for dyeing and antimicrobial finishing on textile fabrics. Novel antibacterial dyestuff containing curcumin moieties with benzoyl amine coupling components showed interesting colourant for polyester fabrics. This work introduced innovative disperse dyes for medical textile applications.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 292