Search results

1 – 10 of over 4000
To view the access options for this content please click here
Article
Publication date: 7 August 2019

Zhihua Niu, Zhimin Li, Sun Jin and Tao Liu

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an…

Abstract

Purpose

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis procedure extends the application area of direct linearization method (DLM) to compliant mechanisms and also illustrates the dimensional interaction within multi-loop compliant structures.

Design/methodology/approach

By applying DLM to both geometrical equations and Lagrange’s equations of the second kind, an analytical deviation modeling method for mechanisms with compliant joints are proposed and further used for statistical assembly variation analysis. The precision of this method is verified by comparing it with finite element simulation and traditional DLM.

Findings

A new modeling method is proposed to represent kinematic relationships between joint deformations and parts/components deviations. Based on a case evaluation, the computational efficiency is improved greatly while the modeling accuracy is maintained at more than 94% rate comparing with the benchmark finite element simulation.

Originality/value

The Equilibrium Equations of Incremental Forces derived from Lagrange’s equations are proposed to quantitatively represent the relationships between manufactured deviations and assembly deformations. The present method extends the application area of DLM to compliant structures, such as automobile suspension systems and some Micro-Electro-Mechanical-Systems.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project…

Downloads
787

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 1 August 2004

Tien‐Fu Lu, Daniel C. Handley, Yuen Kuan Yong and Craig Eales

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly…

Downloads
1738

Abstract

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use piezoelectric actuators (PZT) together with compliant mechanisms to provide fine motions with position resolution in the nanometre or even sub‐nanometre range. Many multiple degree of freedom (DOF) micromotion stages have parallel structures due to better stiffness and accuracy than serial structures. This paper presents the development of a three‐DOF compliant micromotion stage with flexure hinges and parallel structure for applications requiring motions in micrometres. The derivation of a simple linear kinematic model of the compliant mechanism is presented and simulation results before and after calibration are compared with results from finite element (FE) modeling and experiments. The position control system, which uses an experimentally determined constant‐Jacobian, and its performance are also presented and discussed.

Details

Industrial Robot: An International Journal, vol. 31 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 12 October 2021

Augusto Romero

The purpose of this study is to explore the optimum design of bending plate compliant mechanisms subjected to pure mechanical excitations using…

Abstract

Purpose

The purpose of this study is to explore the optimum design of bending plate compliant mechanisms subjected to pure mechanical excitations using topological-derivative-based topology optimization. The main objective is to design the reinforcement in a plate of base material.

Design/methodology/approach

The optimum design is performed by means of a level-set representation method guided by topological derivatives. Kirchhoff and Reissner–Mindlin models are used to solve the linear bending plate problem. A qualitative comparison has been carried out between the optimal obtained topologies for each model.

Findings

The proposed methodology was able to design reinforcement in a plate of the base material. The obtained reinforcements notably improve the device’s behavior. The shape and topology of the reinforcements vary depending on the mechanical plate model considered. In fact, in the Reissner–Mindlin solutions, very thin flexo-torsional hinges connecting big zones of the reinforcement material are designed.

Originality/value

Up to date, the synthesis of ortho-planar mechanisms by means of continuum topology optimization was only boarded within a multi-physics context. In this work, the optimal design of pure ortho-planar compliance actuators is addressed. The best performance is found by analyzing the results for two classical mechanical plate models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 12 August 2020

Ngoc Le Chau, Ngoc Thoai Tran and Thanh-Phong Dao

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge…

Abstract

Purpose

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there are unclear kinematic behaviors. Especially, design optimization for compliant mechanisms becomes an important task when the problem is more and more complex. Therefore, the purpose of this study is to design a new hybrid computational method. The hybridized method is an integration of statistics, numerical method, computational intelligence and optimization.

Design/methodology/approach

A tensural bistable compliant mechanism is used to clarify the efficiency of the developed method. A pseudo model of the mechanism is designed and simulations are planned to retrieve the data sets. Main contributions of design variables are analyzed by analysis of variance to initialize several new populations. Next, objective functions are transformed into the desirability, which are inputs of the fuzzy inference system (FIS). The FIS modeling is aimed to initialize a single-combined objective function (SCOF). Subsequently, adaptive neuro-fuzzy inference system is developed to modeling a relation of the main geometrical parameters and the SCOF. Finally, the SCOF is maximized by lightning attachment procedure optimization algorithm to yield a global optimality.

Findings

The results prove that the present method is better than a combination of fuzzy logic and Taguchi. The present method is also superior to other algorithms by conducting non-parameter tests. The proposed computational method is a usefully systematic method that can be applied to compliant mechanisms with complex structures and multiple-constrained optimization problems.

Originality/value

The novelty of this work is to make a new approach by combining statistical techniques, numerical method, computational intelligence and metaheuristic algorithm. The feasibility of the method is capable of solving a multi-objective optimization problem for compliant mechanisms with nonlinear complexity.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 24 August 2010

Rubén Ansola, Estrella Vegueria and Javier Canales

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Abstract

Purpose

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Design/methodology/approach

The proposed procedure is based on the evolutionary structural optimization (ESO) method. In previous works, this group of authors has successfully applied the ESO method for compliant mechanism optimization under directly applied input loads. The present paper progresses on this work line developing an extension of this procedure, based on an additive version of the method, to approach the more complicated case of thermal actuators.

Findings

The adopted method has been tested in several numerical applications and benchmark examples to illustrate and validate the approach, and designs obtained with this method are compared favorably with the analytical solutions and results derived by other authors using different optimization methods, showing the viability of this technique for uniformly heated actuators optimization.

Research limitations/implications

As a simple initial approach, this research considers only uniform heating of the system, while many thermal actuators are heated nonuniformly. Future works will be based on electrothermal actuation, and nonuniform Joule heating will be considered as well, which might lead to more elegant and efficient solutions.

Practical implications

Compliant micromechanisms that are responsible for movement play a crucial role in microelectromechanical systems (MEMS) design, which cannot be manufactured using typical assembly processes and may not make use of traditional hinges or bearings. The topology optimization method described in this paper enables the systematic design of these devices, which can result in reduced conception time and manufacturing cost.

Originality/value

The ESO method has been successfully applied to several optimum material distribution problems, but not for thermal compliant mechanisms. Even if most applications of this method have been oriented for maximum stiffness structure design, this paper shows that this computation method may be also useful in the design of thermal compliant mechanisms and provides engineers with a very simple and practical alternative design tool.

Details

Engineering Computations, vol. 27 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 7 October 2013

Rubén Ansola, Estrella Veguería, Javier Canales and Cristina Alonso

– This paper aims to show an evolutionary topology optimization procedure for the design of compliant electro-thermal mechanisms.

Abstract

Purpose

This paper aims to show an evolutionary topology optimization procedure for the design of compliant electro-thermal mechanisms.

Design/methodology/approach

The adopted methodology is based in the evolutionary structural optimization (ESO) method. This approach has been successfully applied by this group for compliant mechanisms optimization under directly applied input loads and simple thermal loads. This work proposes an extension of this procedure, based on an additive version of the method, to solve the more complicated case of electro-thermal actuators optimum design, based on Joule's resistive heating.

Findings

Examples solved for the design of plane compliant mechanisms are presented to check the validity of this technique. The designs obtained are compared favorably with results obtained by other authors to illustrate and validate the method, showing the viability of this technique for the optimization of compliant mechanisms under electro-thermal actuation.

Research limitations/implications

This investigation is based on and additive version of the evolutionary method. Since this approach does not have the capability to remove material it could be combined with the classic element rejection evolutionary method to overcome these deficiencies, developing an improved bi-directional algorithm, which should be analyzed and applied for these types of designs in future works.

Practical implications

Electro-thermal actuators have widespread use in MicroElectroMechanical Systems applications. Since these elements cannot be manufactured using typical assembly processes compliant mechanisms optimization play a crucial role for their successful design. The proposed methodology could help engineers to rapidly conceive complex and efficient actuators.

Social implications

The topology optimization procedure developed in this paper enables systematic design of these devices, which can result in a save of manufacturing time and cost.

Originality/value

Most applications of the ESO method have considered maximum stiffness structure design, and even if it has been successfully applied to some other optimum material distribution problems, electro-thermal actuators design has not been considered yet. This paper shows that this methodology could be useful also in the design of electro-thermal compliant mechanisms, and provides engineers with a very simple and practical alternative design tool.

Details

Engineering Computations, vol. 30 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 14 July 2020

Xiaojun Wang, Zhenxian Luo and Xinyu Geng

This paper is to present an experiment to verify that the motion errors of robust topology optimization results of compliant mechanisms are insensitive to load dispersion.

Downloads
198

Abstract

Purpose

This paper is to present an experiment to verify that the motion errors of robust topology optimization results of compliant mechanisms are insensitive to load dispersion.

Design/methodology/approach

First, the test pieces of deterministic optimization and robust optimization results are manufactured by the combination of three-dimensional (3D) printing and casting techniques. To measure the displacement of the test piece of compliant mechanism, a displacement measurement method based on the image recognition technique is proposed in this paper.

Findings

According to the experimental data analysis, the robust topology optimization results of compliant mechanisms are less sensitive to uncertainties, comparing with the deterministic optimization results.

Originality/value

An experiment is presented to verify the effectiveness of robust topology optimization for compliant mechanisms. The test pieces of deterministic optimization and robust optimization results are manufactured by the combination of 3D printing and casting techniques. By comparing the experimental data, it is found that the motion errors of robust topology optimization results of compliant mechanisms are insensitive to load dispersion.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 14 October 2013

Dalibor Petković, Nenad D. Pavlović, Shahaboddin Shamshirband and Nor Badrul Anuar

Passively compliant underactuated mechanisms are one way to obtain the gripper which could accommodate to any irregular and sensitive grasping object. The purpose of the…

Downloads
1130

Abstract

Purpose

Passively compliant underactuated mechanisms are one way to obtain the gripper which could accommodate to any irregular and sensitive grasping object. The purpose of the underactuation is to use less active inputs than the number of degrees of freedom of the gripper mechanism to drive the open and close motion of the gripper. Another purpose of underaction is to reduce the number of control variables.

Design/methodology/approach

The underactuation can morph shapes of the gripper to accommodate different objects. As a result, the underactuated grippers require less complex control algorithms. The fully compliant mechanism has multiple degrees of freedom and can be considered as an underactuated mechanism.

Findings

This paper presents a new design of the adaptive underactuated compliant gripper with distributed compliance. The optimal topology of the gripper structure was obtained by optimality criteria method using mathematical programming technique. Afterwards, the obtained model was improved by iterative finite element optimization procedure. The gripper was constructed entirely of silicon rubber.

Originality/value

The main points of this paper are the explanation of the development and production of the new compliant gripper structure.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Book part
Publication date: 16 September 2021

Abstract

Details

Decision-Based Learning: An Innovative Pedagogy that Unpacks Expert Knowledge for the Novice Learner
Type: Book
ISBN: 978-1-80043-203-1

1 – 10 of over 4000