Search results

1 – 10 of 66
Article
Publication date: 12 May 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of…

Abstract

Purpose

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of sustainable antibacterial and nontoxic surgical gowns.

Design/methodology/approach

The conventional untreated surgical gowns are prone to bacterial attack making them unprotective and infection carriers. Thereby, nanosilver finishing of the surgical-grade dyed denim fabric was achieved via citrate cross-linking under the pad-dry-cure method. The hence treated denim fabrics were characterized for surface chemical, crystalline, textile, color and antibacterial attributes using both conventional and advanced analytical approaches.

Findings

The results expressed that the prepared denim specimens contained surface roughness at the nanoscale besides some alterations in their textile and color parameters. Both textile and comfort properties of the finished fabric remained in the acceptable range with effective antibacterial activity.

Practical implications

The silver nano-finished dyed denim expressed broad-spectrum antibacterial activity and qualified as a potential substrate in the fabrication of surgical gowns. Such sustainable application of nanosilver finishing could be perused for industrial implications.

Originality/value

This study presents citric acid as a crosslinking agent to impregnate the commercially dyed denim fabric for potential application in the fabrication of surgical gowns. The application of nanosilver on prior citrated dyed-grown fabrics could be a novel approach. This study used approximately all the reagents and auxiliaries as bio-based to ensure the nontoxicity and sustainability of the resultant fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

This paper aims to develop an indigo-dyed denim fabric treated with a nanosilver colloid in the presence of a natural crosslinker of citric acid for possible surgical gown…

Abstract

Purpose

This paper aims to develop an indigo-dyed denim fabric treated with a nanosilver colloid in the presence of a natural crosslinker of citric acid for possible surgical gown fabrication applications.

Design/methodology/approach

A bleached denim fabric was dyed with the sustainable indigo dye followed by silver nanofinishing through citric acid crosslinking under the pad-dry-cure method. The prepared denim samples were analyzed for chemo-physical, textile, dyeing, antibacterial and finish release properties.

Findings

The results demonstrated that the comfort and textile characteristics of nanosilver-treated/indigo-dyed cellulosic fabric were affected due to the crosslinking, surface amphiphilicity and air permeability. These properties were, still, in the acceptable range for the fabrication of naturally dyed and antibacterial nanofinished denim gowns.

Practical implications

The dyeing of denim with synthetic dyes may cause harmful effects on the skin and health of the wearer, and the authors present an eco-friendly sustainable approach.

Originality/value

The authors used the fabric substrate, natural indigo dye and reducing/crosslinker agent of citric acid, all being bio-based, in the fabrication of antibacterial dyed fabric for health care garments.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Saima Habib, Farzana Kishwar, Zulfiqar Ali Raza and Sharjeel Abid

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for…

Abstract

Purpose

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for potential antibacterial surgical gown fabrication.

Design/methodology/approach

The nanosilver finish was reproduced using the chemical reduction method. The fabric dyeing was performed on a lab-scale dyeing machine, whereas silver nano-finishing through a pad-dry-cure approach. Citric acid was used as an eco-friendly crosslinker. The specimens were characterized for antibacterial activity, surface chemical, textile, color properties and finish release trend.

Findings

The results demonstrated the successful application of curcumin dye followed by silver nano-finishing. The resultant fabric exhibited appropriate textile, dyeing performance indicators, hydrophobic behavior and sustainable broad-spectrum antibacterial activity.

Practical implications

The prepared nanosilver-finished/curcumin-treated fabric expressed desirable properties for potential applications in the fabrication of surgical gowns.

Originality/value

The authors found no reports on an extensive examination of nanosilver finishing on the color parameters of curcumin-dyed cellulose fabric while retaining its textile and comfort properties for possible surgical gown fabrication.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2013

Yunhui Mei, Gang Chen, Xin Li, Guo‐Quan Lu and Xu Chen

The purpose of this paper is to determine: how much the residual curvature could be formed in sintered nano‐silver assembly when it is cooled to room temperature from the…

Abstract

Purpose

The purpose of this paper is to determine: how much the residual curvature could be formed in sintered nano‐silver assembly when it is cooled to room temperature from the sintering temperature (normally 275°C); how the cyclic temperature load affects the residual curvature or stresses in sintered joint. Then the stress level and the reliability of sintered nano‐silver for high‐temperature applications can be understood.

Design/methodology/approach

5 mm * 2.5 mm silicon chip was bonded with 96 per cent Al2O3 substrate by sintering nanosilver paste. An optical system was developed to measure the curvature of the sintered assemblies. Reliability of the sintered assemblies was evaluated by temperature cycling of −40∼125°C. Finite element analysis was employed to simulate the behavior of the joint subjected to the temperature cycling from −40°C to 125°C by ANSYS. SEM images were taken to investigate the impact of temperature cycling on the reliability of sintered silver attachment.

Findings

This residual bending at room temperature was found concave towards the substrate (alumina) side. Also, with the bondline thickness increasing, the residual curvature decreases obviously. The severity of the residual bending in all the structures was mitigated to some extent with increasing number of cycles. There is no crack in the joint with the thickness of 25 μm. The drop of the residual curvature of the samples with bondline of 25 μm is caused mainly by stress relaxation in sintered silver before 300 cycles. Sample with thicker bondline is more susceptible to thermal cycling for the structure bonded with nanosilver than that with thinner bondline. The poor quality of bonding is due to the thicker sintered joint, which means that sintered nanosilver is not suitable for die‐attachment requiring thick bondline.

Originality/value

The paper describes: how a precise optical system was developed to measure the residual curvature of the sintered assemblies; how the evolution of the residual curvature of the sintered assembly with the temperature cycling was obtained by both experiment and simulation; and how microstructures of the sintered silver joint were analyzed for as‐sintered assembly and the sintered assembly after temperature cycling.

Details

Soldering & Surface Mount Technology, vol. 25 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 July 2021

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

This paper aims to investigate using scanner-based adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANNs) and polynomial regression methods for…

Abstract

Purpose

This paper aims to investigate using scanner-based adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANNs) and polynomial regression methods for prediction of silver nanoparticles (AgNPs) and dye concentrations on AgNP-treated silk fabrics.

Design/methodology/approach

For estimation of the dye and AgNPs concentration using image processing, the silk fabrics were scanned under the condition of 200 pixels per inch. The red green blue (RGB) values of scanned images were obtained after applying the median filter. Then, the relationship between scanner RGB values and dye and AgNPs concentrations were obtained by using artificial intelligence methods such as ANFIS and ANNs.

Findings

The best result was achieved by the ANFIS system for calculation concentration of dye with 0.07% error and concentration of AgNPs with 0.008 (gr/l) error. The obtained results indicate that the performance of the ANFIS system method is better than the other methods.

Originality/value

Using a scanner-based artificial intelligence technique for prediction of nanosilver and dye content on silk fabric.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 November 2017

Ali Shams Nateri, Abbas Hajipour, Saeedeh Balarak and Gholam Khayati

This study aimed to Simultaneous matching of color and antimicrobial properties of silk fabric treated with silver nanoparticle. The antimicrobial finishing using silver…

Abstract

Purpose

This study aimed to Simultaneous matching of color and antimicrobial properties of silk fabric treated with silver nanoparticle. The antimicrobial finishing using silver nanoparticles (AgNPs) is one of the most important finishing processes in the textile industry. Color matching is widely applied in the textile industry, but there has been a need for the prediction of AgNPs concentration for the matching of dyed silver-treated samples.

Design/methodology/approach

In this research, the silk fabrics were dyed with various concentrations of C.I. Acid Red 359 dye at 0.5, 1, 1.5 and 2 per cent (w/w). The dyed fabrics were then coated with AgNPs in several concentrations at 0.015, 0.030, 0.050, 0.100 and 0.250 ml/l. The prediction of dye and AgNPs concentrations were evaluated using single constant color matching and artificial neural network techniques.

Findings

The obtained results indicate that the accuracy of dye concentration prediction, as well as AgNPs concentration prediction, was improved by using a neural network method. Also, the correlation between actual and predicted dye and AgNPs concentrations in the best neural networks is more than the single constant color matching method.

Originality/value

Simultaneous antibacterial and color matching of nanosilver-treated fabric is novel. This method achieved acceptable accuracy for antibacterial and color matching.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2022

K. M. Faridul Hasan, Haona Wang, Sakil Mahmud, Ashraful Islam, Md. Ahsan Habib and Cao Genyang

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an…

Abstract

Purpose

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an ecofriendly synthesis protocol. Human toxicity of silver systematically avoided to use as textile clothing. Primary colors (nearly-red, yellow and blue) were imparted on OCFs via localized surface plasmon resonance (LSPR) of AgNPs. Decent mechanical properties and laundering durability in terms of antibacterial/fastness test improved mechanical properties.

Design/methodology/approach

Silver nanoparticles can be synthesized by using silver nitrate along with commercially available chitosan. Due to the surface LSPR property of silver nanoparticles, it exhibits versatile colors depending on the synthesizing procedures. The coloration occurs due to the electrostatic interaction between the AgNPs and chitosan-treated OCF. The nanotreated fabrics provide excellent mechanical properties with improved antibacterial effects.

Findings

X-ray fluorescence (XRF) analysis quantifies the developed materials in the substrates. Scanning electron microscopy (SEM) characterization indicates the appearance and morphologies of silver nanoparticles into the fabric surface after the coloration process. It proves that the treated cotton knit fabric exhibits the LSPR optical features of AgNPs. The antibacterial and mechanical properties confirm the improved functionality of products.

Originality/value

Improved mechanical properties, antibacterial performances and coloration effects on organic cotton substrates in terms of chitosan-mediated nanosilver are not yet studied.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 October 2018

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the…

Abstract

Purpose

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the simulation and the modeling of complex problems. The purpose of this study is to estimate the dye and the silver nanoparticle (AgNP) concentrations of silver nanoparticle-treated silk fabrics by the aforementioned methods.

Design/methodology/approach

In this study, the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics were matched by using the GA technique based on spectrophotometric color matching. The ANFIS method was also used; this method is based on the grid partitioning algorithm across four different methods. The first and second methods are provided for dye concentration prediction, and the third and the fourth methods are given for AgNP concentration prediction.

Findings

The mean of absolute error and root mean square (RMS) of the best dye concentration prediction by the ANFIS method based on the second method are 0.087 and 0.103, respectively. In addition, the mean of the absolute error and the RMS of the best results for AgNP concentration prediction by the ANFIS method by using the third method is 0.002 and 0.003, respectively. The obtained results indicate that the performance of the ANFIS method is better than the GA method.

Originality value

The simultaneous prediction of the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics was performed by using the GA and the ANFIS. The suggested method led to acceptable accuracy for color and antibacterial matching.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 February 2017

Aneta Arazna, Kamil Janeczek and Konrad Futera

This paper aims to present the results of investigations of inkjet-printed electronic circuits fabricated on a flexible substrate (KAPTON foil) using silver nanoparticles ink.

Abstract

Purpose

This paper aims to present the results of investigations of inkjet-printed electronic circuits fabricated on a flexible substrate (KAPTON foil) using silver nanoparticles ink.

Design/methodology/approach

Fully inkjet-printed conductive circuit tracks were printed on a flexible, transparent KAPTON foil, using a commercial 40LT-15 C nanosilver ink as well as a PixDro LP50 inkjet printer with KonicaMinnolta 512 printhead. After cure, electrical properties by resistance measurements and printing quality by optical and SEM microscopic observation of conductive tracks were examined. Afterwards, the tested samples were annealed for 1, 2 and 3 h at 150°C or subjected to cycling bending.

Findings

It was found that silver nanoparticles ink could be used for the preparation of electronic circuits using the inkjet printing technique. The obtained patterns had appropriate mapping and good quality. It was also noticed that thermal annealing caused a decrease in resistivity values of the tested lines irrespective of their width. Approximately 34 per cent decrease was achieved in the values of resistivity of all the tested lines after the first hour of thermal annealing. After the second hour, the values of resistivity decreased by another 50 per cent. There were no visible changes in resistivity values after 1,000 cycles of bending.

Originality/value

In this paper, the results of thermal annealing and bending tests of inkjet-printed silver nanoparticle conductive tracks on flexible substrate were presented. That is very important information for producing printed circuit boards using ecological, rapid and low-cost inkjet printing techniques, particularly during the production of printed circuit boards on flexible substrates working in different conditions of mechanical and thermal stresses.

Details

Circuit World, vol. 43 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 66