Search results

1 – 10 of over 5000
Article
Publication date: 2 February 2023

Nesij Ünal, Yahya Öz and Tugrul Oktay

Throughout an aircraft development process, the conceptual design phase is an extremely important milestone; hence, the quality and success of this step directly affect the…

155

Abstract

Purpose

Throughout an aircraft development process, the conceptual design phase is an extremely important milestone; hence, the quality and success of this step directly affect the overall cost and lead time of the project. Because of this fact, the purpose of this study is to provide outputs and suggestions to the designing engineer regarding the requirements for reducing overall design time as well as costs and creating an ideal design at the early phases of the project by optimizing the aircraft development process.

Design methodology approach

The system has been prepared parametrically and presents some performance specifications for the aircraft in the early phases of the design, for example, coefficients for lift CL as well as drag CD and weight as well as fuel estimations. The software uses a combination of well-known design techniques within just one platform in contrast to many other applications. Because of this feature, it is not needed to use different sub-platforms which would require an appropriate environment and even though would lead to complications with regard to the connectivity. The system also presents relevant information about the aircraft performance like velocity versus load factor (V-n) diagrams, maximum turn rate of climb, turn rate and climb angle graphs in contrast to many other open-source conceptual design platforms.

Findings

In this study, authentic General Dynamics F-16 Fighting Falcon and McDonnell Douglas F-15 Eagle data were used as input to the system, and advanced geometric and/or performance graphs were obtained and compared to the literature where a good agreement of the results was observed. These results with regard to the aircraft performance are typically product specific and quite rare in the literature. These data obtained by use of the software during the aircraft design are, thus, of major interest, especially for the design of new aerospace platforms. In this study, all of these graphs (especially the remarkable V-n diagram) are obtained on one platform.

Originality value

The aircraft conceptual design and analysis system software provides information and suggestions regarding the requirements for reducing the overall design time, reducing the design costs and creating an optimized design at the early phases of a project by optimizing the aircraft development process within just one convenient, that is, user friendly, platform, where it uses a combination of varying methodologies. Besides presenting one interface, which is quite typical for conceptual design tools, it allows applications of methods like vortex lattices and finite differences for obtaining aerodynamic performance parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 May 2012

Sven Ziemer and Gernot Stenz

The purpose of this paper is to promote the opportunities of open source software (OSS) development in aeronautics. Using the development of an open source framework for…

Abstract

Purpose

The purpose of this paper is to promote the opportunities of open source software (OSS) development in aeronautics. Using the development of an open source framework for conceptual aircraft design as an example, this paper discusses how an inter‐organizational collaboration between industry and academia can build an environment for multi‐disciplinary aircraft design projects.

Design/methodology/approach

The paper takes the form of a literature study and comparison of software tools.

Findings

The open source model can facilitate the emergence of a large inter‐organizational community in aeronautics for developing a comprehensive software framework.

Practical implications

Developing a general OSS framework for conceptual aircraft design has the potential of attracting a large community for inter‐organizational collaboration on software tools for a multi‐disciplinary optimization (MDO) environment.

Originality/value

Using the concepts of open source in aeronautics has the potential to improve the collaboration among industry and academia on developing software tools for an MDO environment.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 July 2017

Vittorio Trifari, Manuela Ruocco, Vincenzo Cusati, Fabrizio Nicolosi and Agostino De Marco

This paper aims to introduce the take-off and landing performance analysis modules of the software library named Java toolchain of Programs for Aircraft Design (JPAD), dedicated…

Abstract

Purpose

This paper aims to introduce the take-off and landing performance analysis modules of the software library named Java toolchain of Programs for Aircraft Design (JPAD), dedicated to the aircraft preliminary design. An overview of JPAD is also presented.

Design/methodology/approach

The calculation of the take-off and landing distances has been implemented using a simulation-based approach. This expects to solve an appropriate set of ordinary differential equations, which describes the aircraft equations of motion during all the take-off and landing phases. Tests upon two aircraft models (ATR72 and B747-100B) have been performed to compare the obtained output with the performance data retrieved from the related flight manuals.

Findings

The tool developed has proven to be very reliable and versatile, as it performs the calculation of the required performance with almost no computational effort and with a good accuracy, providing a less than the 5 per cent difference with respect to the statistical trend and a difference from the flight manual or public brochure data around 10 per cent.

Originality/value

The use of a simulation-based approach to have a more accurate estimation of the ground performance with respect to classic semi-empirical equations. Although performing the simulation of the aircraft motion, the approach shown is very time-saving and can be easily implemented in an optimization cycle.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 1 August 2023

Johannes Schneider and Andreas Strohmayer

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and…

Abstract

Purpose

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and efficient way.

Design/methodology/approach

The tasks to development new aircraft sizing methods are systematically analyzed. In particular, repeating and nonrepeating tasks and common or unique tasks. Then ordered in a sequence and described generically.

Findings

A development process for new aircraft design methods which are necessary for new technologies or configurations is introduced and explained step by step.

Practical implications

Introducing the capability to deal with new technologies or configurations, aircraft design tools or aircraft concepts requires new sizing methods.

Originality/value

The paper presents a systematic approach which can be used to develop a great amount of new sizing methods with a comparable usability and quality standard in an efficient and effective way.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2018

Péter Deák

The purpose of this paper is to make an analytical comparison of two vertical tail models from a structural point of view.

Abstract

Purpose

The purpose of this paper is to make an analytical comparison of two vertical tail models from a structural point of view.

Design/methodology/approach

The original vertical tail design of PZL-106BT aircraft was used for Computer aided design (CAD) modeling and for creating the finite element model.

Findings

The nodal displacements, Von-Mises stresses and Buckling factors for two vertical tail models have been found using the finite element method. The idea of a possible Multidisciplinary concept assessment and design (MDCAD) concept was presented.

Practical implications

The used software analogy introduces an idea of having an automated calculation procedure within the framework of MDCAD.

Originality/value

The aircraft used for calculation had undergone a modification in its vertical tail length, as there was an urgent need to calculate for the plane’s manufacturer, PZL Warszawa – Okecie.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 May 2012

Mengmeng Zhang and Arthur Rizzi

The goal for this paper is to bring the easy‐to‐use geometry drawing software RDS to a “solid” mesh, which could be analyzed and simulated in CEASIOM, to enhance both CEASIOM and…

Abstract

Purpose

The goal for this paper is to bring the easy‐to‐use geometry drawing software RDS to a “solid” mesh, which could be analyzed and simulated in CEASIOM, to enhance both CEASIOM and RDS's capabilities.

Design/methodology/approach

The RDSSUMO interface is developed based on the feature that both RDS and SUMO define their geometric model using cross‐sectional information, i.e. their “universe” shapes are close to each other.

Findings

The translation is automated and allows the engineer to easily modify and augment the geometry in the process. Two test cases are shown, with their high quality Euler mesh and CFD computations. The A321‐look‐alike test case tests the mesh quality for transonic aerodynamics, such as high‐speed trim and drag divergence; the twin‐prop asymmetric aircraft is a “diffi+cult” non‐conventional configuration analyzed for yaw stability in one‐engine out mode.

Practical implications

This paper shows that the CFD solutions based on solid grids could be obtained once the design is proposed and the RDS wire‐frame model is available. The aerodynamic properties can then be predicted in early design stage, which is very efficient for preliminary aircraft design.

Originality/value

This fast meshing tool could obtain “working” grids of a new design within hours.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 8 May 2018

Aidan Jungo, Mengmeng Zhang, Jan B. Vos and Arthur Rizzi

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods…

2192

Abstract

Purpose

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods (CEASIOM) and to compare results of different aerodynamic tools. The concurrent design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

Design/methodology/approach

CEASIOM (www.ceasiom.com) is a framework that integrates discipline-specific tools like computer-aided design, mesh generation, computational fluid dynamics (CFD), stability and control analysis and structural analysis, all for the purpose of aircraft conceptual design.

Findings

A new CEASIOM version is under development within EU Project AGILE (www.agile-project.eu), by adopting the CPACS XML data-format for representation of all design data pertaining to the aircraft under development.

Research limitations/implications

Results obtained from different methods have been compared and analyzed. Some differences have been observed; however, they are mainly due to the different physical modelizations that are used by each of these methods.

Originality/value

This paper summarizes the current status of the development of the new CEASIOM software, in particular for the following modules: CPACS file visualizer and editor CPACSupdater (Matlab) Automatic unstructured (Euler) & hybrid (RANS) mesh generation by sumo Multi-fidelity CFD solvers: Digital Datcom (Empirical), Tornado (VLM), Edge-Euler & SU2-Euler, Edge-RANS & SU2-RANS Data fusion tool: aerodynamic coefficients fusion from variable fidelity CFD tools above to compile complete aero-table for flight analysis and simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft

3737

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 March 2006

99

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 March 2006

311

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 5000