Search results

1 – 10 of 816
Article
Publication date: 19 September 2008

Jin Gang Gao, Yi Ping Wu, Han Ding and Nian Hong Wan

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper profile

Abstract

Purpose

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper profile shape and heating factor Qη, a measure of success for high reliability of the solder joints reflowed.

Design/methodology/approach

An in‐depth analysis of the heating mechanism and some experiments of the reflow soldering process are performed to research on how to realize a specific shape reflow profile were conducted.

Findings

Heating mechanism analysis and experiments demonstrate that the combinatorial parameters based method is feasible to do thermal profiling.

Research limitations/implications

The mapping function among a particular configured PCBA, an oven used, a target reflow profile and an optimal range of the heating factor should be further established for fast and reliable production of reflow soldering.

Practical implications

Provides a methodology for designing an oven recipe for reflow soldering production.

Originality/value

An oven recipe can be quickly attained with the approach established in this paper, facilitating the formation of solder joints with high reliability during the reflow soldering process.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 1999

Ning‐Cheng Lee

A reflow profile is proposed which is engineered to optimize soldering performance based on defect mechanism analysis. In general, a slow ramp‐up rate is desired in order to…

1188

Abstract

A reflow profile is proposed which is engineered to optimize soldering performance based on defect mechanism analysis. In general, a slow ramp‐up rate is desired in order to minimize hot slump, bridging, tombstoning, skewing, wicking, opens, solder beading, solder balling, and components cracking. A minimized soaking zone reduces voiding, poor wetting, solder balling, and opens. Use of a low peak temperature lessens charring, delamination, intermetallics, leaching, dewetting, and voiding. A rapid cooling rate helps to reduce grain size as well as intermetallic growth, charring, leaching and dewetting. However, a slow cooling rate reduces solder or pad detachment. The optimized profile favors that the temperature ramps up slowly until reaching about 180°C. Implementation of the optimized profile requires the support of a heating‐efficient reflow technology with a controllable heating rate. Emergence of the forced air convection reflow provides a controllable heating rate. In addition, it is not sensitive to variation in parts’ features, thus allows the realization of the optimized profile.

Details

Soldering & Surface Mount Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 2004

B. Salam, C. Virseda, H. Da, N.N. Ekere and R. Durairaj

A study of the Sn‐Ag‐Cu lead‐free solder reflow profile has been conducted. The purpose of the work was to determine the Sn‐Ag‐Cu reflow profile that produced solder bumps with a…

1110

Abstract

A study of the Sn‐Ag‐Cu lead‐free solder reflow profile has been conducted. The purpose of the work was to determine the Sn‐Ag‐Cu reflow profile that produced solder bumps with a thin intermetallic compound (IMC) layer and fine microstructure. Two types of reflow profiles were studied. The results of the experiment indicated that the most significant factor in achieving a joint with a thin IMC layer and fine microstructure was the peak temperature. The results suggest that the peak temperature for the Sn‐Ag‐Cu lead‐free solder should be 230°C. The recommended time above liquidus is 40 s for the RSS reflow profile and 50‐70 s for the RTS reflow profile.

Details

Soldering & Surface Mount Technology, vol. 16 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2023

Yangyang Lai and Seungbae Park

This paper aims to propose a method to quickly set the heating zone temperatures and conveyor speed of the reflow oven. This novel approach intensely eases the trial and error in…

Abstract

Purpose

This paper aims to propose a method to quickly set the heating zone temperatures and conveyor speed of the reflow oven. This novel approach intensely eases the trial and error in reflow profiling and is especially helpful when reflowing thick printed circuit boards (PCBs) with bulky components. Machine learning (ML) models can reduce the time required for profiling from at least half a day of trial and error to just 1 h.

Design/methodology/approach

A highly compact computational fluid dynamics (CFD) model was used to simulate the reflow process, exhibiting an error rate of less than 1.5%. Validated models were used to generate data for training regression models. By leveraging a set of experiment results, the unknown input factors (i.e. the heat capacities of the bulkiest component and PCB) can be determined inversely. The trained Gaussian process regression models are then used to perform virtual reflow optimization while allowing a 4°C tolerance for peak temperatures. Upon ensuring that the profiles are inside the safe zone, the corresponding reflow recipes can be implemented to set up the reflow oven.

Findings

ML algorithms can be used to interpolate sparse data and provide speedy responses to simulate the reflow profile. This proposed approach can effectively address optimization problems involving multiple factors.

Practical implications

The methodology used in this study can considerably reduce labor costs and time consumption associated with reflow profiling, which presently relies heavily on individual experience and skill. With the user interface and regression models used in this approach, reflow profiles can be swiftly simulated, facilitating iterative experiments and numerical modeling with great effectiveness. Smart reflow profiling has the potential to enhance quality control and increase throughput.

Originality/value

In this study, the employment of the ultimate compact CFD model eliminates the constraint of components’ configuration, as effective heat capacities are able to determine the temperature profiles of the component and PCB. The temperature profiles generated by the regression models are time-sequenced and in the same format as the CFD results. This approach considerably reduces the cost associated with training data, which is often a major challenge in the development of ML models.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 February 2007

JinGang Gao, YiPing Wu and Han Ding

This paper aims to establish a method to optimize reflow profiles and achieve high reliability of solder joints on the basis of the heating factor, Qη, a measure of the reflow

Abstract

Purpose

This paper aims to establish a method to optimize reflow profiles and achieve high reliability of solder joints on the basis of the heating factor, Qη, a measure of the reflow profile related to reliability of reflow processed products.

Design/methodology/approach

The focus of the paper is on how to realize the optimal range of Qη, since there is no need to pay particular attention to the shape of a reflow profile when performing a heating factor‐based optimization. The coldest point on the printed circuit board assembly (PCA), which experiences the minimum heating factor (Qη min ) during the reflow process, was used to set the lower limit of the optimal range (QηL). If Qη min  approaches QηL and the temperature difference across the PCA is minimized, then the solder joints on the PCA will all experience heating factors within the optimal range, ensuring high quality reflow soldering. Establishing an initial reflow profile may be performed using profiling software. The resultant oven recipe may then be used as the reference recipe by which to apply the heating factor‐based optimization. A combinatorial parameter, Ht, is defined to represent the temperature settings of all the top heating zones within the heating section of the reflow oven. The relative difference between Ht and each top heating zone temperature setting is derived from the reference recipe, and Ht is then adjusted to achieve QηL for Qη min . This is achieved by using a least squares estimation method to build a regression model for Qη min  versus Ht.

Findings

Experiments and regression analysis have demonstrated that Qη min  varied linearly with Ht, with α denoting its slope. With a measured Qη min  in response to the reference setup after the first run of a PCA, Ht should be increased by ((QηLQη min )/α) to attain QηL in the second run. Thereby, a suitable reflow process recipe can be obtained with only two reflow runs where Qη min  is close to QηL.

Research limitations/implications

The optimal range of heating factor for lead‐free solder pastes is currently unknown, and the method to establish the required oven recipe for achieving a required reflow profile requires further exploration.

Practical implications

Provides a methodology for reducing the risk of process‐related reliability issues in lead‐free soldering.

Originality/value

QηL can be fairly quickly achieved for Qη min  with the approach established in this paper, facilitating the formation of solder joints with high reliability during the reflow soldering process.

Details

Soldering & Surface Mount Technology, vol. 19 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 February 2017

Lubomir Livovsky and Alena Pietrikova

This paper aims to present a new method of real-time monitoring of thermal profiles applied in vapour phase soldering (VPS) reflow processes. The thermal profile setting is a…

Abstract

Purpose

This paper aims to present a new method of real-time monitoring of thermal profiles applied in vapour phase soldering (VPS) reflow processes. The thermal profile setting is a significant variable that affects the quality of joints. The method allows rapid achievement of a required thermal profile based on software control that brings new efficiency to the reflow process and enhanced joint quality, especially for power electronics.

Design/methodology/approach

A real-time monitoring system based on computerized heat control was realized in a newly developed laboratory VPS chamber using a proportional integral derivation controller within the soldering process. The principle lies in the strictly accurate monitoring of the real defined reflow profile as a reference.

Findings

Very accurate maintenance of the required reflow profile temperature was achieved with high accuracy (± 2°C). The new method of monitoring and control of the reflow real-time profiling was verified at various maximal reflow temperatures (230°C, 240°C and 260°C). The method is feasible for reflowing three-dimensional (3D) power modules that use various types of solders. The real-time monitoring system based on computerised heat control helped to achieve various heights of vapour zone.

Originality/value

The paper describes construction of a newly developed laboratory-scale VPS chamber, including novel real-time profiling of the reflow process based on intelligent continuously measured temperatures at various horizontal positions. Real-time profiling in the laboratory VPS chamber allowed reflow soldering on 3D power modules (of greater dimensions) by applying various flux-less solder materials.

Details

Soldering & Surface Mount Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 July 2020

Faisal Rehman, Rafiq Asghar, Kashif Iqbal, Ali Aman and Agha Ali Nawaz

In surface mount assembly (SMA) process, small components are subjected to high temperature variations, which result in components’ deformation and cracking. Because of this…

Abstract

Purpose

In surface mount assembly (SMA) process, small components are subjected to high temperature variations, which result in components’ deformation and cracking. Because of this phenomenon, cracks are formed in the body of carbonyl powder ceramic inductor (CPCI) in the preheat and cooling stages of the reflow oven. These cracks become the main cause of board failure in the ageing process. The purpose of this paper is to ascertain the thermal stress, thermal expansion of carbonyl iron ceramics and its effects on crack commencement and proliferation in the preheat stage of reflow oven. Moreover, this paper also categorized and suggested important parameters of reflow profile that could be used to eliminate these thermal shock failures.

Design/methodology/approach

In this paper, two different reflow profiles were studied that evaluate the thermal shock of CPCI during varying ΔT at the preheat zone of the reflow oven. In the first profile, the change in temperature ΔT at preheat zone was set to 3.26°C/s, which has resulted in a number of device failures because of migration of micro cracks through the CPCI. In the second profile, this ΔT at preheat stage is minimized to 2.06°C/s that eliminated the thermal stresses; hence, the failure rates were significantly reduced.

Findings

TMPC0618H series lead (Pb)-free CPCI is selected for this study and its thermal expansion and thermal shock are observed in the reflow process. It is inferred from the results that high ΔT at preheat zone generates cracks in the carbonyl powder-type ceramics that cause device failure in the board ageing process. Comparing materials, carbonyl powder ceramic components are less resistant to thermal shock and a lower rate of temperature change is desirable.

Originality/value

The proposed study presents an experimental analysis for mitigating the thermal shock defects. The realization of the proposed approach is validated with experimental data from the printed circuit boards manufacturing process.

Details

Soldering & Surface Mount Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 2002

J.G. Lee, F. Guo, K.N. Subramanian and J.P. Lucas

The influence of the thermal reflow profile on the formation and resultant morphology of the intermetallic layer that developed at the Ni particle reinforcements within an…

Abstract

The influence of the thermal reflow profile on the formation and resultant morphology of the intermetallic layer that developed at the Ni particle reinforcements within an eutectic Sn‐Ag composite solder matrix was investigated. The composite solder was fabricated by mechanically dispersing 15 vol% Ni particles into eutectic Sn‐3.5Ag solder paste. Two distinct intermetallic compound (IMC) morphological microstructures were observed around the Ni reinforcements. IMC morphological microstructure apparently varied depending on the amount of heat input and differences in heating rates used in the reflow profile. A “sunflower” IMC morphology was typically noted when the total amount of heat input was small. However, with sufficient heat input, a faceted “blocky” IMC morphology was consistently achieved. Multiple‐reflow thermal profiling experiments were conducted to measure and compare the amount of heat input necessary to change the sunflower IMC morphology around Ni particle reinforcements to the blocky morphology.

Details

Soldering & Surface Mount Technology, vol. 14 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2022

Yangyang Lai, Ke Pan, Yuqiao Cen, Junbo Yang, Chongyang Cai, Pengcheng Yin and Seungbae Park

This paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components…

273

Abstract

Purpose

This paper aims to provide the proper preset temperatures of the convection reflow oven when reflowing a printed circuit board (PCB) assembly with varied sizes of components simultaneously.

Design/methodology/approach

In this study, computational fluid dynamics modeling is used to simulate the reflow soldering process. The training data provided to the machine learning (ML) model is generated from a programmed system based on the physics model. Support vector regression and an artificial neural network are used to validate the accuracy of ML models.

Findings

Integrated physical and ML models synergistically can accurately predict reflow profiles of solder joints and alleviate the expense of repeated trials. Using this system, the reflow oven temperature settings to achieve the desired reflow profile can be obtained at substantially reduced computation cost.

Practical implications

The prediction of the reflow profile subjected to varied temperature settings of the reflow oven is beneficial to process engineers when reflowing bulky components. The study of reflowing a new PCB assembly can be started at the early stage of board design with no need for a physical profiling board prototype.

Originality/value

This study provides a smart solution to determine the optimal preset temperatures of the reflow oven, which is usually relied on experience. The hybrid physics–ML model providing accurate prediction with the significantly reduced expense is used in this application for the first time.

Article
Publication date: 1 January 1994

F.J. de Klein

For reflow soldering in today's changing component and soldering technology, requirements with respect to profiling seem to be difficult to determine and even harder to meet…

Abstract

For reflow soldering in today's changing component and soldering technology, requirements with respect to profiling seem to be difficult to determine and even harder to meet. State‐of‐the‐art reflow trackers can be of help here, but, without some knowledge of the fundamentals in profiling, it will be easy to misunderstand measurements. The use of nitrogen as a protective gas for reflow soldering can be advantageous for fine pitch technology, bare copper boards and low residue solder pastes. However, because reflow solder defects are related to more than just the use of nitrogen, one may find different benefits for the use of nitrogen, depending on how the investigations are carried out. Wetting under nitrogen is certainly better and more reproducible, while the near absence of oxygen is beneficial to oxidation‐related problems. For high numbers of solder joints per board, it is not easy to achieve an acceptable first pass yield. Only with low, controlled defect levels found within a robust reproducible process is it possible to achieve this. Using forced convection together with nitrogen for reflow soldering is becoming the preferred method.

Details

Soldering & Surface Mount Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0954-0911

1 – 10 of 816