Search results

1 – 10 of 368
Article
Publication date: 8 May 2018

Xiaoliang Liu, Gai Zhao and Jinhao Qiu

The purpose of this paper is to investigate the effect of laser surface texturing on the tribological properties of polyimide composites and the output performance of traveling…

Abstract

Purpose

The purpose of this paper is to investigate the effect of laser surface texturing on the tribological properties of polyimide composites and the output performance of traveling wave rotary ultrasonic motor.

Design/methodology/approach

The surface texturing on polyimide composites specimens were fabricated by laser ablation process of different dimple densities, and then the tribological properties were tested by a flat-on-flat tribometer under dry conditions. Finally, the output performance of the traveling wave rotary ultrasonic motor was tested to verify the effectiveness of dimples surface texturing.

Findings

The results show that surface texturing can greatly enhance the friction coefficient of contact interface, especially the specimen with a dimple density of 7.06 per cent exhibited the highest friction coefficient among the specimens. When the input voltage is 500 V, the output power, locked-rotor torque and output torque of ultrasonic motor with textured PI of 7.06 per cent dimple density as friction material at the speed of 100 r/min increased by 13.8, 19 and 12.8 per cent compared to that of the untextured PTFE, respectively. When the ultrasonic motor reverses, the output performance is increased by 20.9, 40.3 and 17.7 per cent, respectively.

Originality/value

Surface texturing is an effective way to improve the friction behavior of polyimide composites and then correspondingly enhance the energy conversion efficiency and output performance of the traveling wave rotary ultrasonic motor.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 1981

A.K. ST. NASA CLAIR

Due to their outstanding thermal stability, polyimides are now being carefully considered for use as matrix resins, adhesives, films and coatings. If successful, this unique class…

Abstract

Due to their outstanding thermal stability, polyimides are now being carefully considered for use as matrix resins, adhesives, films and coatings. If successful, this unique class of polymers could greatly extend the present upper limit of 177°–205°C achievable in aerospace work with even higher temperatures and longer service life.

Details

Aircraft Engineering and Aerospace Technology, vol. 53 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2016

Juan Wu, Ziming Kou and Gongjun Cui

The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on…

358

Abstract

Purpose

The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on tribological performance under distilled water condition.

Design/methodology/approach

Three carbon fiber-reinforced polyimide matrix composites were fabricated by using a hot press molding technique. The tribological behaviors of carbon fiber-reinforced polyimide matrix composites sliding against steel ball were evaluated with a ball-on-disk tribotester under distilled water condition. Meanwhile, the effect of different length of carbon fiber on the wear resistance of polyimide matrix composites was investigated during the sliding process.

Findings

The friction coefficients and specific wear rates of polyimide composites containing 100 μm carbon fibers were lower than those of other specimens. The wear mechanism of carbon fiber-reinforced composites was delamination under distilled water condition. The interfacial combination between the carbon fiber and matrix became worse with the increase of length of carbon fiber.

Originality/value

This paper reported the effect of the different length of carbon fiber on polyimide matrix composites to prepare mechanical parts in mining industrial fields.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 May 2024

Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Abstract

Purpose

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Design/methodology/approach

The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.

Findings

The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.

Practical implications

This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.

Originality/value

In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 March 2018

Ling Weng, Ting Wang, Pei-Hai Ju and Li-Zhu Liu

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding…

Abstract

Purpose

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding materials with rather high temperature stability, good processability and moderate mechanical properties, the authors chose the polyimide (PI) foam as matrix and ferriferrous oxide (Fe3O4) as fillers to prepare the composite foams with lightweight and rather good electromagnetic interference shielding performance.

Design/methodology/approach

Some polyimide nanocomposite foams with Fe3O4 as fillers have been prepared by in situ dispersion and foaming with pyromellitic dianhydride (PMDA) and isocyanate (PAPI) as raw materials and water as foaming agent. By varying the Fe3O4 contents, a series of PI/Fe3O4 nanocomposite foams with fine microstructures and high thermal stability were obtained. The structure and performances of nanocomposite foams were examined, and the effects of Fe3O4 on the microstructure and properties of composite foams were investigated.

Findings

This work demonstrates that PI/Fe3O4 foams could be fabricated by thermally treating the polyimide foam intermediates with Fe3O4 nanoparticles through a blending reaction of precursors. The final PI/Fe3O4 composite foams maintained the excellent thermal property and showed a super paramagnetic behaviour, which has a positive effect on the improvement of electromagnetic shielding performance.

Research limitations/implications

In this paper, the effects of Fe3O4 on the performances of PI/Fe3O4 composite foam were reported. It provided an effective methodology for the preparation of polymer/Fe3O4 nanocomposite foams, which hold great promise towards the potential application in the areas of electromagnetic shielding materials.

Originality/value

A series of PI/Fe3O4 composite foams with different contents of Fe3O4 were prepared by blending reaction of the precursors. The effects of Fe3O4 on the structures and properties of PI/Fe3O4 composite foam were discussed in detail.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 July 2014

Naidu Seetala, Cassandra Hendon, Naeem Tull-Walker, Johan Van Behr, Barry Hester, Marisabel Lebron-Colon and Michael Meador

Polyimide nanocomposites were prepared with 0 and 1 wt% single wall-and double wall- CNTs (functionalized and non-functionalized) from BPADA and BAPP by refluxing in NMP. These…

Abstract

Polyimide nanocomposites were prepared with 0 and 1 wt% single wall-and double wall- CNTs (functionalized and non-functionalized) from BPADA and BAPP by refluxing in NMP. These nanocomposites were characterized using FT-IR, TGA, DSC, tensile strength, and Positron annihilation lifetime spectroscopy (PALS). The FT-IR spectra for all the samples showed the characteristic peaks of polyimide. TGA curves showed weight loss with temperature in two stages. The first stage 180-300 °C showed a weight loss of ~ 15% that may be associated with the release of trapped NMP. The second stage 500-750 °C with a drastic weight loss is associated with decomposition. The residual weight is ~ 40% at 750 °C for both pure polyimide and polyimide nano composites made with functionalized single or double wall CNTs. The non-functionalized CNT dispersed polyimide showed similar two-step behavior, but the weight loss is remarkably less and about 80% weight remained at 750 °C. DSC curves of all polyimide samples showed two distinguishable endothermic peaks at around 90 °C (the onset of NMP release) and 200 °C (structural change). PALS was used to study the nano-porosity. Positron lifetime has a correlation with tensile strength showing a decrease in tensile strength with increasing pore size in CNT-polyimide composites.

Details

World Journal of Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2020

Yafeng Zhang, Shaohua Zhang, Gang Zhou, Jiang Zhang, Tao Qing and Ningning Zhou

Random point-contact between the space bearing retainer and the rolling elements may cause wear of the space bearing retainer. The paper aims to clarify the friction and wear…

Abstract

Purpose

Random point-contact between the space bearing retainer and the rolling elements may cause wear of the space bearing retainer. The paper aims to clarify the friction and wear behaviors of polyimide bearing retainer under point-contact condition.

Design/methodology/approach

Space bearing retainers were cut into flat specimens and the tribological behaviors of the specimens were studied under point-contact condition using a friction and wear testing machine. Different sliding velocities and normal loads were used to simulate the running state of space bearing retainer. The wear behaviors of the space bearing retainer were analyzed by SEM and white light interferometer.

Findings

The friction coefficient of the polyimide composites decreased with increase in sliding velocity from 1  to 5 mm/s. Moreover, with increase in sliding velocity and normal load, the wear rate of the polyimide composites decreased and increased, respectively. Moreover, the wear behaviors of the polyimide composites were mainly determined by the combined actions of ploughing friction and adhesive friction. The lubricating properties of transfer film and wear debris were limited under point-contact condition.

Practical implications

The paper includes implications for the understanding of the wear mechanism of the polyimide composites space bearing retainer under point-contact condition and then to optimize space bearing retainer materials further.

Originality/value

Under point-contact condition, wear debris can hardly participate in the friction process because of limited contact area. Consequently, the wear debris has limited impact on the wear process to decrease the friction and wear.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0017/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2019

Jeetendra Kumar Malav, Ramesh C. Rathod, Vipin Tandon and Awanikumar P. Patil

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO…

Abstract

Purpose

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO) composites coating.

Design/methodology/approach

Electroactive polyimide/copper oxide (EPI/CuO) composites were prepared by oxidative coupling polymerization followed by thermal imidization method.

Findings

The functional and structural properties of composites were characterized by X-ray diffraction, Fourier transmission infra-red and ultra violet-visible spectroscopy and the surface topography was characterized by field emission scanning electron microscope analysis and anticorrosion performance in 3.5 Wt.% NaCl was evaluated by electrochemical techniques. The obtained results of electrochemical techniques measurement indicated that the composites coated samples give better corrosion protection against attacking electrolyte.

Originality/value

The ever-increasing price of nickel (Ni) is driving the industries to use low-Ni austenitic stainless steels (ASSs). However, it exhibits relatively poor corrosion resistance as compared with conventional Cr-Ni ASSs. Nonetheless, its corrosion resistance can be enhanced by polymeric (electroactive polyimide [EPI]) coating. CuO particles exhibit the hydrophobic properties and can be used as inorganic filler to incorporate in EPI to further enhance the corrosion protection. The present research paper is beneficial for industries to use low-cost AISI 201, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 January 2016

M.Y. Zhang, L.Z. Liu, L. Weng, W.W. Cui and K.S. Hui

– The aim of this study was to fabricate polyimide (PI)/Al2O3 composite films via surface modification and ion exchange techniques, and examine their properties.

377

Abstract

Purpose

The aim of this study was to fabricate polyimide (PI)/Al2O3 composite films via surface modification and ion exchange techniques, and examine their properties.

Design/methodology/approach

The method involves hydrolyzing the PI film double surface layers in an aqueous potassium hydroxide (KOH) solution and incorporating aluminium ions (Al3+) into the hydrolyzed layers of the PI film via subsequent ion exchange, followed by a treatment of the Al3+-loaded PI films with an aqueous ammonia solution, which leads to the formation of Al(OH)3 in the surface-modified layers. After a final thermal annealing treatment in ambient air, the Al(OH)3 decomposes to Al2O3, and forms composite layers on both surfaces of the re-imidized PI film.

Findings

The PI/Al2O3 composite film obtained with a 6 hours of KOH treatment exhibited excellent thermal stability, good mechanical properties and better electric breakdown strength and corona-resistance properties than the pristine PI film.

Practical implications

The method for obtaining the composite films in this paper is worth consideration, but additional research will be needed. Furthermore, this method is of general importance for the fabrication of composite PI films with tailored properties.

Originality/value

This study showed that surface modification and ion-exchange techniques are powerful methodologies for the fabrication of PI/Al2O3 composite films.

Details

Pigment & Resin Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 368