Search results

1 – 10 of 91
Article
Publication date: 2 August 2011

Jairo Chimento, M. Jason Highsmith and Nathan Crane

The purpose of this paper is to evaluate the performance of 3D printed materials for use as rapid tooling (RT) molds in low volume thermoforming processes such as in manufacturing…

2480

Abstract

Purpose

The purpose of this paper is to evaluate the performance of 3D printed materials for use as rapid tooling (RT) molds in low volume thermoforming processes such as in manufacturing custom prosthetics and orthotics.

Design/methodology/approach

3D printed specimens of different materials were produced using the Z‐Corp process. The parts were post processed using both standard and alternative methods. Material properties relevant to the 3D printed parts such as pneumatic permeability, flexural strength and wear rate were measured and compared to standard plaster compositions commonly used.

Findings

Three‐dimensional printing (3DP) can replicate the performance of the plaster materials traditionally used in prosthetic/orthotic applications by using modified post process techniques. The resulting 3D printed molds can still be modified and adjusted using traditional methods. The results show that 3D printed molds are feasible for thermoforming prosthetic and orthotic devices such as prosthetic sockets while providing new flexibility.

Originality/value

The proposed method for RT of a mold for prosthetic/orthotic manufacturing provides great flexibility in the manufacturing and fitting process while maintaining proven materials in the final device provided to patients. This flexibility increases the value of digital medical records and efforts to develop model‐based approaches to prosthetic/orthotic device design by providing a readily available process for recreating molds. Depending on the needs of the practitioners and patients, 3DP can be incorporated at a variety of points in the manufacturing process.

Details

Rapid Prototyping Journal, vol. 17 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1989

G.J. Monkman, P.M. Taylor and G.J. Farnworth

With the growing need of automation for garment assembly in the clothing industry comes the requirement for a compete range of textile handling devices. Robotics offers the…

Abstract

With the growing need of automation for garment assembly in the clothing industry comes the requirement for a compete range of textile handling devices. Robotics offers the flexibility needed to compete in a market where change in style and fashion can be both rapid and unpredictable. The actual physical mechanisms involved in the use of electrostatic attraction of clothing fabrics as a robot gripping technique are discussed. Following an outline of the underlying principles, experimental results are presented for a range of materials tested using electroadhesive surfaces. A selection of robot gripper configurations are provided together with a discussion of their relative merits.

Details

International Journal of Clothing Science and Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Xinjin Liu, Hong Zhang and Xuzhong Su

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the…

Abstract

Purpose

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the spinning triangle. Compact spinning with perforated drum and lattice apron are mainly two kinds of pneumatic compact spinning now. The purpose of this paper is to study the comparative analysis on four kinds of pneumatic compact spinning systems, including two kinds of compact spinning with perforated drum: Rieter’s COM4 and complete condensing spinning (CCS), two kinds of compact spinning with lattice apron: Sussen’s three-line compact spinning (TLCS) and Toyota’s four-line compact spinning (FLCS).

Design/methodology/approach

First, the basic properties of four systems were introduced and comparatively analyzed. Then, the 29.2 tex (20S), 14.6 tex (40S), 9.7 tex (60S) and 7.3 tex (80S) combed cotton yarns were spun in the four pneumatic compact spinning systems and ring spinning system, respectively. The evenness, breaking strength and hairiness of spun yarns were tested. Finally, the properties of corresponding woven fabric were tested.

Findings

It is shown that comparing to compact spinning with lattice apron, the disposable input cost of compact spinning with perforated drum is higher, but the maintenance cost is lower. Comparing to compact spinning with lattice apron, the evenness of yarn spun by compact spinning with perforated drum is improved whereas the breaking strength is decreased. Furthermore, although harmful long hairiness (=3 mm) of yarn spun by CCS is a little more, the beneficial short hairiness (1-2 mm) is also more, which can make the fabric fullness and have better comfortable feeling.

Originality/value

In the paper, comparative analysis on four kinds of pneumatic compact spinning systems, compact spinning with perforated drum: Rieter’s COM4 and CCS, and compact spinning with lattice apron: Sussen’s TLCS and Toyota’s FLCS, were studied. The basic properties, spun yarn qualities and properties of corresponding woven fabric of four systems were analyzed comparatively.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 December 2020

Yousef Ebraheem, Emilie Drean and Dominique Charles Adolphe

The paper aims to present the design, validation and integration of a universal fabric gripper. Flexible material handling is one of the most challenging problems occurring in the…

Abstract

Purpose

The paper aims to present the design, validation and integration of a universal fabric gripper. Flexible material handling is one of the most challenging problems occurring in the field of manipulator robots. Because textile products shape and properties can widely vary, each textile and each technological operation should have its own specialized gripper. The objective of the work described here is therefore to design a universal gripper able to grip and transfer every kind of textile.

Design/methodology/approach

The design objectives are the ability to handle panels of varying shapes and sizes without material deformation and/or folding, and the easy integration with commercially available manipulator robots. To answer initial requirements and increase the textile gripping reliability, we opted to combine three different gripping technologies: vacuum, intrusion and pinch.

Findings

Each system was first validated independently through static tests. The vacuum technology offers a high reliability to handle impermeable materials. The intrusion technology is reliable for the manipulation of high porosity materials, while the pinch technology shows good results for all soft fabrics when combined with the vacuum technology. Then, the limits of the new gripper in terms of gripping capacity, compressed air consumption and characteristics and limitations of the flexible material handled were put in evidence using a robot arm. An automated selection program of the gripper based on the material characteristics has also been developed and implemented.

Originality/value

This paper fulfills an identified need to design a universal gripper able to grip and transfer every different kind of cut textile.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Zhou Rongmei and Qin Xiaoxuan

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to…

Abstract

Purpose

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to introduce one kind of pneumatic compact spinning, four-line compact spinning (FLCS), into the silk spinning, and study and comparatively analyze corresponding yarn and fabric qualities.

Design/methodology/approach

First, two kinds of spun silk and viscose blend yarns, 120 Nm (8.3 tex) and 205 Nm (4.9 tex), were spun on the common ring spinning frame FK501 and spinning frame modified by FLCS, respectively. Then, after the plying and singeing procedures, the ply yarns 120 and 205 Nm/2 were produced. The evenness, breaking strength, and hairiness of the spun bobbin yarns and ply yarns were tested and comparatively analyzed. Then, properties of corresponding woven fabric, including the weight, thickness, permeability, stiffness, softness, smoothness, draping, wrinkle recovery, hand-touching (RHV), were measured and comparatively analyzed.

Findings

For the spun yarns, it is shown that by using the compact spinning method, the comprehensive quality of spun-silk blend bobbin and ply yarns are improved. For the fabrics, it is shown that compared with the fabric made of ring yarn, the weight and thickness of fabric made of compact yarn decreased, and the air permeability of fabric increased, but the difference is tiny. Meanwhile, the stiffness, smoothness of fabric made of compact yarn increased slightly, but the softness decreased slightly, leading to a little worse fabric hand-touching.

Originality/value

In the paper, one kind of pneumatic compact spinning, FLCS, was introduced into the silk spinning, and corresponding yarn and fabric qualities were studied and comparatively analyzed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 October 2023

Jianping Wang, Jinzhu Shen, Xiaofeng Yao and Fan Zhang

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart…

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart manufacturing.

Design/methodology/approach

This work scrutinised the current research status of the five automatic grasping methods for garment fabrics including the pneumatic suction grasping, the electrostatic grasping, the intrusive grasping and the dexterous grasping. Specifically, the principles, characteristics, main devices and the impact on garment production were discussed.

Findings

In particular, soft finger of the dexterous grasping method has good flexibility and adaptability in the process of fabric grasping, which provides a new solution for garment production automation. Up to now, the reviewed method in general exhibit good grasping speed, high grasping stability and flat grasping process. However, in the face of complex fabric materials which are thin and flexible and do not return their original shapes when deformed in practical applications, the gripper for automatic fabric grasping need new technological breakthroughs in the positioning accuracy, grab efficiency and flexible grasping.

Originality/value

The outcomes offered an overview of the research status and future trends of the automatic grasping methods for garment fabrics in the field of apparel intelligent manufacturing. It could not only provide scholars with convenience in identifying research hot spots and building potential cooperation in the follow-up research but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 January 1992

Antonín Havelka and Zdenêk Kus

Examines the problems involved in mechanically lifting a cut piece of fabric from stacked layers, successfully separating the single piece, and transferring it to a precisely…

Abstract

Examines the problems involved in mechanically lifting a cut piece of fabric from stacked layers, successfully separating the single piece, and transferring it to a precisely defined position. Grasping heads of four main types (or a combination) are commonly used: mechanical, pneumatic, adhesive and electrostatic. Describes experimental testing of mechanical heads operating with needles for different types of fabrics. Additional equipment (brushes on the edge of the cut fabric layer) always increased taking‐off reliability, as did additional pressure plates up to a certain mass.

Details

International Journal of Clothing Science and Technology, vol. 4 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 April 2019

Esin Sarıoğlu

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin…

Abstract

Purpose

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin polyester (v-PET) raw materials from which single jersey knitted fabric samples are manufactured. Meanwhile, numerical optimization method was used in predetermined parameters to determine the optimum r-PET and v-PET blend ratio and yarn manufacturing technology. In the optimization analysis, the average values of the important yarn and fabric properties inspected were taken as a target according to the 50 percent proportion of r-PET and v-PET fiber for both compact and ring yarn manufacturing technology.

Design/methodology/approach

To encourage the use of value-added textile products produced from recycling PET bottle with the focus of social responsibility is a condition that should be evaluated within the scope of waste management. The recycling of PET bottles and finding new opportunities for the uses in different field are crucial for both contributing environmental economy and conserving natural energy resources. The most important alternative ways is to use the r-PET fiber from recycling PET bottle in textile industry. In this study, 19.7 tex r-PET/cotton and v-PET/cotton-blended compact and ring spun yarns were produced at different blending ratios at the same production parameters.

Findings

Results showed that blend type, blend ratio and yarn manufacturing technology have statistical significance effect on bursting strength and air permeability. Besides, it was found that blend type has no significance on wale wise wicking rate unlike other parameters. Optimization analysis indicated that single jersey knitted fabric with v-PET/CO 58.62/41.38 percent compact yarn had higher desirability with the value of 0.72.

Originality/value

At the present time, r-PET fiber is blended in small amount (approximately 5–15 percent blend ratio) with both cotton and polyester together. In addition, it is possible using different fiber blend types instead of cotton and polyester according to the usage area. The most important question is to determine the amount of r-PET proportion. In other words, both optimum yarn/fabric quality parameters should be ensured and at the same time life cycle of the apparels should not be short when the optimum r-PET proportion is taken into consideration.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

Selin Hanife Eryuruk, Burçak Karagüzel Kayaoglu and Fatma Kalaoglu

Surgical gowns should be designed and produced using special techniques to provide barrier properties against potential risks during surgery and healthcare procedures. Ultrasonic…

Abstract

Purpose

Surgical gowns should be designed and produced using special techniques to provide barrier properties against potential risks during surgery and healthcare procedures. Ultrasonic welding is one of these methods used to produce surgical gowns with determined barrier properties. The purpose of this paper is to analyse bond strength and permeability properties of ultrasonically welded nonwoven fabrics and compare them with traditional sewing techniques.

Design/methodology/approach

In this study, ultrasonic welding of nonwovens was performed to demonstrate its use as an assembly method. Performance requirements in the design of surgical gowns were determined. Fabric strengths and bond strengths of ultrasonic-welded and traditionally sewn fabrics were analysed. The performance properties, i.e., bond strength, air and water resistance of the fabrics and the joints obtained by ultrasonic and classical sewing methods were studied.

Findings

As a result, it was found that ultrasonic welding technique is a suitable method for joining layers in surgical gown production bringing the advantages of high water resistance together with acceptable bond strength.

Originality/value

The current study focuses on the use of ultrasonic welding of nonwovens used for disposable protective surgical gowns. Ultrasound welding technique was presented as an alternative to classic assembly methods and ultrasonic welding technology was applied to different fabric combinations simulating different layers in different joining sections of a surgical gown.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3553

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 91