Search results

1 – 10 of 133
Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Baixi Chen, Weining Mao, Yangsheng Lin, Wenqian Ma and Nan Hu

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and…

Abstract

Purpose

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and environmental factors during manufacturing, the FDM parts inevitably demonstrated uncertainty in properties and performance. This study aims to identify the stochastic constitutive behaviors of FDM-fabricated polylactic acid (PLA) tensile specimens induced by the manufacturing process.

Design/methodology/approach

By conducting the tensile test, the effects of the printing machine selection and three major manufacturing parameters (i.e., printing speed S, nozzle temperature T and layer thickness t) on the stochastic constitutive behaviors were investigated. The influence of the loading rate was also explained. In addition, the data-driven models were established to quantify and optimize the uncertain mechanical behaviors of FDM-based tensile specimens under various printing parameters.

Findings

As indicated by the results, the uncertain behaviors of the stiffness and strength of the PLA tensile specimens were dominated by the printing speed and nozzle temperature, respectively. The manufacturing-induced stochastic constitutive behaviors could be accurately captured by the developed data-driven model with the R2 over 0.98 on the testing dataset. The optimal parameters obtained from the data-driven framework were T = 231.3595 °C, S = 40.3179 mm/min and t = 0.2343 mm, which were in good agreement with the experiments.

Practical implications

The developed data-driven models can also be integrated into the design and characterization of parts fabricated by extrusion and other additive manufacturing technologies.

Originality/value

Stochastic behaviors of additively manufactured products were revealed by considering extensive manufacturing factors. The data-driven models were proposed to facilitate the description and optimization of the FDM products and control their quality.

Article
Publication date: 30 April 2024

Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang and Wendong Zhang

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals…

Abstract

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 December 2023

Hao Wang and Yunna Liu

This study aims to construct a mental health service system for middle school students in the post-COVID-19 era with the framework of Six Sigma DMAIC (define, measure, analyze…

Abstract

Purpose

This study aims to construct a mental health service system for middle school students in the post-COVID-19 era with the framework of Six Sigma DMAIC (define, measure, analyze, improve and control) and analyze the influencing factors of the mental health service system to study the implementation strategies of quality-oriented mental health services in middle schools.

Design/methodology/approach

This study was conducted in Tianjin, China, from September to November 2022, and 350 middle school students from Tianjin Public Middle School were selected as subjects. A questionnaire survey was used to collect data. In this study, the Six Sigma DMAIC method, sensitivity analysis method, exploratory factor analysis and principal component analysis were used to analyze the mental health services provided to middle school students.

Findings

Based on the Six Sigma DMAIC framework, this study indicates that the contribution rate of the mental health service process factor is the largest in the post-COVID-19 era. The mental health cultivation factor ranks second in terms of its contribution. Mental health quality and policy factors are also important in the construction of middle school students’ mental health service system. In addition, the study highlights the importance of parental involvement and social support in student mental health services during the post-COVID-19 era.

Originality/value

To the best of the authors’ knowledge, a study on middle school students’ mental health in the post-Covid-19 era has not yet been conducted. This study developed a quality-oriented mental health system and analyzed the influencing factors of mental health for middle school students based on data analysis and the Six Sigma DMAIC method.

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 28 August 2023

Lee McCallum

This paper aims to present a lesson that showcases how artificial intelligence (AI) tools may be chiefly used in L2 language classrooms to design culture-focussed…

Abstract

Purpose

This paper aims to present a lesson that showcases how artificial intelligence (AI) tools may be chiefly used in L2 language classrooms to design culture-focussed telecollaboration tasks and aid their completion by students.

Design/methodology/approach

The paper begins by reviewing traditional approaches and guidance for developing telecollaboration tasks. It then models how tasks can be designed using the popular AI tool “Chat Generative Pre-training Transformer (ChatGPT)” and then simulates how tasks may be completed by learners using ChatGPT-generated information as a springboard for their own culturally appropriate outputs.

Findings

The simulated lesson illuminates the potential value of AI tools for teachers and students. However, it also highlights particular aspects of AI literacy that teachers and learners need to be aware of.

Practical implications

This paper has clear practical implications for teacher development by raising awareness of the importance of teachers upskilling in telecollaboration task design and in their understanding of how AI tools can collaborate with them in language classrooms.

Originality/value

The paper adds to the current body of literature on telecollaboration and more specifically adds weight to current discussions taking place around AI tools in language education. By the end of reading the paper, teachers will have a comprehensive grounding in how to use ChatGPT in their classrooms. In doing so, the author demystifies how teachers and students may start exploring these tools in ways that target developing intercultural communicative competence.

Details

Journal for Multicultural Education, vol. 18 no. 1/2
Type: Research Article
ISSN: 2053-535X

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Access

Year

Last week (133)

Content type

Article (133)
1 – 10 of 133