Search results

1 – 10 of over 1000
Article
Publication date: 1 June 2002

P. Vas, M. Rashed, A.K.M. Joukhadar and C.H. Ng

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation…

Abstract

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation (NFO). So far only vector‐type of NFO induction motor drives have been discussed in the literature, and very limited experimental results have been shown. In addition, the paper will also discuss new sensorless DTC‐type of NFO induction motor drives (NFO‐DTC drives). Using fully digital implementations of the new NFO‐type induction motor and permanent magnet drives, experimental results will be shown for various operating conditions, including slow and fast reversals at very low speed. Robustness to parameter deviations will also be demonstrated. The developed new types of NFO drives can also work at zero stator frequency and sustained zero frequency operation will also be demonstrated. The drives have been tested in basically two environments: where the load is a dc motor; and where a crane drive is implemented. In contrast to other sensorless crane drives, which develop stability problems, it was found that the new NFO drives can operate in a stable manner under all operating conditions including zero frequency. This allows for many new applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2008

Bassem El Badsi and Ahmed Masmoudi

The purpose of this paper is to analyze the performance of a new direct torque control (DTC) strategy dedicated to four‐switch three‐phase inverter (FSTPI)‐fed induction motor

Abstract

Purpose

The purpose of this paper is to analyze the performance of a new direct torque control (DTC) strategy dedicated to four‐switch three‐phase inverter (FSTPI)‐fed induction motor drives with extended speed range.

Design/methodology/approach

The approach is based on the synthesis of a suitable vector selection table in order to reduce torque ripple. The performance analysis is carried out based on three criteria: the total harmonic distortion; the switching loss factor; and the quality factor.

Findings

It has been clearly shown that the introduced DTC strategy offers high performance during both transient and steady‐state operations of the FSTPI‐fed induction motor drive, which are almost the same as those yielded by the Takahashi DTC strategy implemented in the same motor fed by a conventional six‐switch three‐phase inverter (SSTPI).

Research limitations/implications

The work should be extended by an experimental validation of the simulation results.

Practical implications

The established results open up crucial benefits from the point of view of cost‐effectiveness and volume‐compactness of induction motor drives especially in large‐scale industries such as the automotive, where electric and hybrid propulsion systems are currently regarded as an interesting alternative to substitute or to assist the thermal propulsion systems.

Originality/value

The paper presents the implementation of a dedicated DTC strategy in FSTPI‐fed induction motor drives with extended speed range. The proposed DTC strategy offers interesting performance compared with that yielded by the Takahashi DTC strategy implemented in the same motor fed by an SSTPI.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2010

Veran V. Vasić, Darko P. Marčetić, Slobodan N. Vukosavić and Đura V. Oros

The purpose of this paper is to propose an analytical method for prediction of self‐sustained oscillations that might happen during low‐cost induction motor drive application…

Abstract

Purpose

The purpose of this paper is to propose an analytical method for prediction of self‐sustained oscillations that might happen during low‐cost induction motor drive application. This forecast is needed to avoid unwanted oscillations that can be encountered for in fan, compressor and pump drives utilizing open‐loop frequency‐controlled three‐phase induction motor drives.

Design/methodology/approach

The paper presents the model of the induction motor drive system that includes inverter switches dead‐time and allows discontinuous current of front‐end rectifier. Stability analysis of proposed model was performed by tracing the eigenvalues of the overall system matrix.

Findings

Discontinuous rectifier current at light loads and the dead‐time of the inverter switches are the main sources of undesired low‐frequency self‐sustained speed oscillations in open‐loop controlled induction motor drives. The evaluated risk prediction is a function of drive and motor parameters and load level.

Originality/value

The proposed induction motor drive system model highlights the direct connection between the self‐sustained speed oscillations and the system parameters like inverter dead time, dc capacitor values, motor parameters and motor load level. Good accuracy of instability prediction is verified by dynamic simulation and by extensive experimentation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2008

Asma Ben Rhouma and Ahmed Masmoudi

The purpose of this paper is to describe the implementation of a direct torque control strategy dedicated to three‐switch three‐phase delta‐shaped inverter (TSTPI) fed induction

Abstract

Purpose

The purpose of this paper is to describe the implementation of a direct torque control strategy dedicated to three‐switch three‐phase delta‐shaped inverter (TSTPI) fed induction motor drives as well as the comparison of its performance with those yielded by six‐switch three‐phase inverter (SSTPI) fed induction motor drives under the Takahashi DTC strategy.

Design/methodology/approach

Referring to the asymmetrical stator voltage vectors and in order to reach high dynamic with low ripple of the electromagnetic torque response, the design of the vector selection table should include virtual voltage vectors by the subdivision of each sector into two equal sub‐sectors.

Findings

It has been shown that the implementation of the proposed DTC strategy in TSTPI‐fed induction motor drives leads to higher transient behaviour and better steady‐state features than those exhibited by the Takahashi DTC strategy implemented in SSTPI‐fed induction motor drives.

Research limitations/implications

The research should be extended to a comparison of the obtained simulation results with experimental measurements.

Practical implications

A 50 per cent reduction of cost and compactness associated with a 50 per cent increase of reliability makes the TSTPI an interesting candidate, especially in large‐scale production applications such as the automotive industry.

Originality/value

The paper proposes an approach to improve the cost‐effectiveness, the compactness and the reliability of TSTPI‐fed induction motor drives, which represents a crucial benefit in electric and hybrid propulsion systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Badii Bouzidi, Bassem El Badsi and Ahmed Masmoudi

This paper seeks to investigate the performance of a DTC strategy dedicated to the control of four‐switch three‐phase (B4) inverter fed induction motor drives. The major advantage…

Abstract

Purpose

This paper seeks to investigate the performance of a DTC strategy dedicated to the control of four‐switch three‐phase (B4) inverter fed induction motor drives. The major advantage of the B4 inverter is the reduced number of the involved power switches which opens up crucial cost benefits.

Design/methodology/approach

The principle of operation of the B4 inverter fed induction motor drive is recalled in a first step. Then, the basis of the proposed DTC strategy is presented. Following this, the synthesis of the corresponding vector selection table is carried out considering a subdivision of the space vector plan into sixteen sectors.

Findings

It has been found experimentally that the B4 inverter fed induction motor drive offers, under the proposed control strategy, interesting performance.

Research limitations/implications

This work should be extended considering a comparison between the performance of B4 inverter fed induction motor drive under the proposed DTC strategy and those of the B6 inverter fed induction motor drive under the popular Takahashi DTC strategy.

Originality/value

The paper proposes a new DTC strategy dedicated to induction motor drives fed by B4 inverter. This reduced structure inverter is of great interest for large‐scale production industries such as the automotive one as far as cost‐effectiveness is concerned.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 January 2007

Abdessattar Guermazi, Bassem El Badsi, Mourad Masmoudi and Ahmed Masmoudi

This paper seeks to discuss the implementation of the rotor flux oriented control (RFOC) in a four‐switch three‐phase inverter (FSTPI)‐fed induction motor drive.

Abstract

Purpose

This paper seeks to discuss the implementation of the rotor flux oriented control (RFOC) in a four‐switch three‐phase inverter (FSTPI)‐fed induction motor drive.

Design/methodology/approach

The implementation is achieved considering a current regulation of the FSTPI. Such a regulation is done thanks to bang‐bang regulators. As far as the FSTPI is fed by a battery pack, the paper considers an electrical equivalent circuit of such a power supply.

Findings

Simulation works, carried out considering the case of an ideal model of the battery pack and the case where the electrical equivalent circuit of the battery pack is taken into account, have shown that the drive dynamic performance are practically the same. Furthermore, and in order to highlight the performance of the induction motor fed by a FSTPI, these are compared with those obtained with the induction motor fed by a conventional six‐switch three‐phase inverter (SSTPI), considering both models of the battery pack. It has been found that the drive offers almost the same dynamic and steady‐state performance.

Research limitations/implications

The work should be extended by an experimental validation of the simulation results.

Practical implications

The established results open up crucial benefits from the point of view of cost‐effectiveness and volume‐compactness improvements of induction motor drives especially in large‐scale industries such as the automotive one where electric and hybrid propulsion systems are currently regarded as an interesting alternative to substitute or to assist the thermal propulsion systems.

Originality/value

The implementation of the RFOC in FSTPI‐fed induction motor drives is feasible and exhibits almost the same performance as those obtained by conventional SSTPI‐fed induction motor drives under the same control strategies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2010

Czeslaw T. Kowalski and Jacek D. Lis

The purpose of this paper is to present a fixed‐point implementation of a complete direct torque control (DTC) algorithm connected with a rotor speed estimation algorithm for the…

Abstract

Purpose

The purpose of this paper is to present a fixed‐point implementation of a complete direct torque control (DTC) algorithm connected with a rotor speed estimation algorithm for the induction motor drive, using field‐programmable gate array (FPGA).

Design/methodology/approach

The parallel processing approach is described, which requires a decomposition of the control and estimation algorithms for the converter‐fed induction motor to several tasks, realised in parallel. The advanced data processing techniques are described, like PIPELINE technique for data streams design, coordinate rotation digital computer algorithm for transformation of stator flux vector components from Cartesian to polar coordinates. Moreover, the method for the qualitative analysis of the full‐order state observer's sensitivity to the variations of the induction motor equivalent circuit parameters is presented.

Findings

It is shown that the developed FPGA‐based DTC structure enables designing an efficient application for the induction motor control. Owing to the high‐processing frequency, the digital FPGA‐based DTC application is similar in its features to the analogue realisation based on the comparators. Yet all the advantages of the digital structure, i.e. high flexibility, parameterization capability, etc. remain unchanged. Furthermore, FPGA is hardware realisation of a digital data processing algorithm; hence the reliability of the control system is improved.

Research limitations/implications

The investigations are performed in the developing prototype setup, based on PXI‐1042 Industrial PC equipped with Xilinx Virtex‐II FPGA matrix, programmed with LabVIEW.

Practical implications

The experimental tests of the FPGA‐based implementation of the whole control structure of the sensorless DTC drive system are demonstrated. It is also shown, that the full‐order state observer with the speed adaptation loop is significantly sensitive to motor parameter variations in the low‐speed region, which must be taken into account while designing the adaptation algorithm for speed estimation in real application.

Originality/value

The paper's value lies in the overall, FPGA‐based design of the speed sensorless DTC structure for the induction motor including motor speed, torque and stator flux control loops, stator flux and rotor speed estimation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2002

P. Vas, M. Rashed, A.K.M. Joukhadar and C.H. Ng

There are two main types of speed/position sensorless closed‐loop variable‐speed electrical drives: sensorless and quasi‐sensorless drives. In sensorless drives, the classical…

Abstract

There are two main types of speed/position sensorless closed‐loop variable‐speed electrical drives: sensorless and quasi‐sensorless drives. In sensorless drives, the classical speed and position sensors (transducers) are absent and are replaced by mathematical‐model‐based and/or artificial‐intelligence‐based estimators. In quasi‐sensorless drives, instead of conventional speed/position sensors, smart sensor bearings are used (e.g. SKF smart sensor bearings). The present paper discusses the latest developments in the field of sensorless and quasi‐sensorless variable‐speed high‐performance drives. Thus, a new family of sensorless and quasi‐sensorless induction motor and permanent magnet synchronous motor drives are also discussed (e.g. new sensorless vector and DTC drives, etc.). Methods which enable the operation of these drives at very low speed and also at zero stator frequency are discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 April 2020

Sathishkumar Kaliyavarathan and Sivakumaran T.S.

The purpose of this paper is to study the development of novel multiphase induction motor (MPIM) with copper die cast rotor in the drive system of electric propulsion vehicles…

Abstract

Purpose

The purpose of this paper is to study the development of novel multiphase induction motor (MPIM) with copper die cast rotor in the drive system of electric propulsion vehicles (EPV). It is estimated that the manufacturers are concerned about high torque,Efficiency, motor life, energy conservation and high thermal tolerance. To ensure maximum torque and efficiency with multiphase winding and copper die cast technology to increasing high thermal tolerance, life, energy conversations. On other hand, it is very important of EPV application.

Design/methodology/approach

The focus of the investigation is threefold: the modified method carried out on MPIM both stator and rotor can overcome the current scenario problem facing by electric vehicles manufacture and developed perfect suitable electric motor for EPV applications. The design and simulation carried out finite element method (FEM) that was more accurate calculations. Finally developed prototype model of MPIM with copper die cast are discussed with conventional three phase Die casting Induction motor.

Findings

The paper confirmed the multiphase copper die-cast rotor induction motor (MDCrIM) is providing better performance than conventional motor. Proposed motor can bring additional advantage like heat tolerances, long life and energy conversations.

Originality/value

The experiments confirmed the MDCIM suitable for EPV Applications. The modified MDCIM of both stator and rotor are giving better result and good performance compared to conventional method.

1 – 10 of over 1000