Search results

1 – 10 of 37
Article
Publication date: 9 January 2024

Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…

Abstract

Purpose

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.

Design/methodology/approach

A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.

Findings

A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.

Originality/value

The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2023

Amador Chapa, Enrique Cuan-Urquizo, PD Urbina-Coronado and Armando Roman-Flores

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of…

292

Abstract

Purpose

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of cellular solids is relevant by virtue of their enormous potential to exhibit non-traditional deformation mechanisms. The purpose of this study is to exploit the benefits of the FFF technology to fabricate re-entrant honeycomb structures using thermoplastic polyurethane (TPU) to characterize their mechanical response when subjected to cyclic compressive loadings.

Design/methodology/approach

Specimens with different volume fraction were designed, three-dimensionally printed and tested in uniaxial cyclic compressions up until densification strain. The deformation mechanism and apparent elastic moduli variation throughout five loading/unloading cycles in two different loading orientations were studied experimentally.

Findings

Experimental results demonstrated a nonlinear relationship between volume fraction and apparent elastic modulus. The amount of energy absorbed per loading cycle was computed, exhibiting reductions in energy absorbed of 12%–19% in original orientation and 15%–24% when the unit cells were rotated 90°. A softening phenomenon in the specimens was identified after the first compression when compared to second compression, with reduction in apparent elastic modulus of 23.87% and 28.70% for selected samples V3 and H3, respectively. Global buckling in half of the samples was observed, so further work must include redesign in the size of the samples.

Originality

The results of this study served to understand the mechanical response of TPU re-entrant honeycombs and their energy absorption ability when compressed in two orientations. This study helps to determine the feasibility of using FFF as manufacturing method and TPU to construct resilient structures that can be integrated into engineering applications as crash energy absorbers. Based on the results, authors suggest structure’s design optimization to reduce weight, higher number of loading cycles (n > 100) and crushing velocities (v > 1 m/s) in compression testing to study the dynamic mechanical response of the re-entrant honeycomb structures and their ability to withstand multiple compressions.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 July 2023

Niranjan Chikkanna, Shankar Krishnapillai and Velmurugan Ramachandran

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve…

Abstract

Purpose

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve the indentation performance of the re-entrant diamond auxetic metamaterial by tuning the structural parameters that have not been reported.

Design/methodology/approach

The design of experiment strategy was adopted to study the influence of re-entrant angle, diamond angle and thickness-to-length ratio on relative density, load, stiffness and specific energy absorption (SEA) during indentation experimentally. Grey relational analysis was chosen as a multi-objective optimisation technique to optimise structural performance. Surrogate models were proposed to uphold the metamaterial’s tailorability for desired application needs. The fit and efficacy of the proposed models were tested using specific statistical techniques. The predominant deformation mechanisms observed with the alteration in structural parameters were discussed.

Findings

The improvements noticed are 48 times hike in load, 112 times improvement in stiffness and 10 times increase in SEA for optimised structures. The surrogate models are proven to predict the outputs accurately for new input parameters. In-situ displacement fields are visualised with an image processing technique.

Originality/value

To the best of the authors’ knowledge, the indentation performance of the re-entrant diamond auxetic metamaterials has not been reported and reported for the first time. The influence of geometrical parameters on the newly developed structure under concentrated loading was evaluated. The geometry-dependent printing variations associated with 3D printing have been discussed to help the user to fabricate re-entrant diamond auxetic metamaterial.

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 May 2023

Diana L. Ramírez-Gutiérrez, Enrique Cuan-Urquizo and Rita Q. Fuentes-Aguilar

Demanding applications could benefit from the mathematical parametrization of lattice structures as this could lead not only to the characterization of structure–property relation…

Abstract

Purpose

Demanding applications could benefit from the mathematical parametrization of lattice structures as this could lead not only to the characterization of structure–property relation but also facilitates the tailoring of the effective mechanical properties. This paper aims to characterize the mechanical performance of sine-based lattices. The characterization includes the results of in-plane Poisson’s ratio plates models, and the stiffness of additively manufactured lattice plates when loaded in the out-of-plane direction, with the objective of obtaining a relation with their geometrical parameters.

Design/methodology/approach

The geometrical parameter–Poisson’s ratio relationship was characterized via finite element (FE) simulations. The stiffness was also measured on additively manufactured polylactic acid lattice plates and contrasted with FE computations.

Findings

The characterization of auxetic lattice plates performed using in-plane and out-of-plane loading leads to key properties when deciding the geometry specific for applications: relative density, auxetic behavior and stiffness. Approximately 26% reduction of stiffness was observed between the square lattice and sine-based lattices of the same volume fraction.

Originality/value

Auxetic metamaterials are potential candidates for applications in biomedical engineering, smart sensors, sports and soft robotics. This paper aims to contribute to the existing gap in the study of auxetic metamaterials subjected to complex loading conditions, other than simple tension and compression, required for the mentioned applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 February 2020

John C.S. McCaw and Enrique Cuan-Urquizo

While additive manufacturing via melt-extrusion of plastics has been around for more than several decades, its application to complex geometries has been hampered by the…

Abstract

Purpose

While additive manufacturing via melt-extrusion of plastics has been around for more than several decades, its application to complex geometries has been hampered by the discretization of parts into planar layers. This requires wasted support material and introduces anisotropic weaknesses due to poor layer-to-layer adhesion. Curved-layer manufacturing has been gaining attention recently, with increasing potential to fabricate complex, low-weight structures, such as mechanical metamaterials. This paper aims to study the fabrication and mechanical characterization of non-planar lattice structures under cyclic loading.

Design/methodology/approach

A mathematical approach to parametrize lattices onto Bèzier surfaces is validated and applied here to fabricate non-planar lattice samples via curved-layer fused deposition modeling. The lattice chirality, amplitude and unit cell size were varied, and the properties of the samples under cyclic-loading were studied experimentally.

Findings

Overall, lattices with higher auxeticity showed less energy dissipation, attributed to their bending-deformation mechanism. Additionally, bistability was eliminated with increasing auxeticity, reinforcing the conclusion of bending-dominated behavior. The analysis presented here demonstrates that mechanical metamaterial lattices such as auxetics can be explored experimentally for complex geometries where traditional methods of comparing simple geometry to end-use designs are not applicable.

Research limitations/implications

The mechanics of non-planar lattice structures fabricated using curved-layer additive manufacturing have not been studied thoroughly. Furthermore, traditional approaches do not apply due to parameterization deformations, requiring novel approaches to their study. Here the properties of such structures under cyclic-loading are studied experimentally for the first time. Applications for this type of structures can be found in areas like biomedical scaffolds and stents, sandwich-panel packaging, aerospace structures and architecture of lattice domes.

Originality/value

This work presents an experimental approach to study the mechanical properties of non-planar lattice structures via quasi-static cyclic loading, comparing variations across several lattice patterns including auxetic sinusoids, disrupted sinusoids and their equivalent-density quadratic patterns.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2019

Xin Ren, Fang Cheng Liu, Xiang Yu Zhang and Yi Min Xie

This paper aims to study the tensile performance, deformation characteristics, auxeticity and stability of different auxetic tubular structures generated by cutting method and…

Abstract

Purpose

This paper aims to study the tensile performance, deformation characteristics, auxeticity and stability of different auxetic tubular structures generated by cutting method and pattern scale factor (PSF) method using validated finite element analysis.

Design/methodology/approach

Two types of auxetic tubular structures were designed by a coordinate transformation method and the PSF adjustment method, respectively. ABAQUS/explicit solver was used for the large deformation analysis and the displacement of key nodes was extracted to calculate Poisson’s ratio value and evaluate the deformation of tubular structures.

Findings

The random cut method was not suitable for designing auxetic tubular structures. Vertical and horizontal cut approach was suitable, but the change of the tubular diameter was lower than the tubular structures generated by the PSF adjustment method.

Research limitations/implications

Simple ways to generate auxetic tubular structure, which can be made into intelligent and foldable equipment, such as annuloplasty rings, angioplasty stents and oesophageal stents. By combined with shape memory polymer, various smart tubular materials and structures with various functions can be designed, especially in medical scaffold and other medical equipment fields.

Originality/value

The auxetic characteristic of tubular structure designed by using random cut method has been investigated for the first time. The outcome of this study would be very useful design tubular structures with better mechanical properties.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 December 2020

Mohamad Attar, Seher Selen Aydin, Aliye Arabaci and Ilven Mutlu

The purpose of this paper is the production of mechanical meta-material samples by rapid prototyping (RP) and replica technique for patient-specific skin graft or cranial implant…

Abstract

Purpose

The purpose of this paper is the production of mechanical meta-material samples by rapid prototyping (RP) and replica technique for patient-specific skin graft or cranial implant applications in tissue engineering.

Design/methodology/approach

Positive moulds (patterns) were produced by stereolithography-based RP. Impression moulding method was used for the production of silicone products (skin grafts). Alginate was used as a moulding material (negative mould). Room temperature vulcanising silicone was poured into the cavity of alginate mould and then products were produced. TiO2 powder and carbon fibres were used as reinforcement. Meta-material structured polyurethane reinforced silicone composites were also produced. Liquid components (diisocyanate and polyol) were poured into the mould and then polyurethane was produced. Then, polyurethane was immersed in the liquid silicone.

Findings

It is found that non-destructive ultrasonic test is a fast and reliable method. Meta-material-based composites show dome-shaped tensile/synclastic surface properties which are important for the skin graft and cranial implants. Increasing the amounts of cross-linking agent and TiO2 particles increased the hardness and elastic modulus. Carbon fibre addition enhanced the elastic modulus.

Originality/value

Although there are studies on the meta-materials, there is limited study on the RP of the meta-materials for patient-specific implants (skin grafts). Auxetic surface shows perfect fit to curved surface of the skull. Although there are studies on the silicone and polyurethane composites, there is limited study on the characterisation of mechanical properties by ultrasonic tests and strain gauge analysis.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2023

Matheus Francisco, João Pereira, Lucas Oliveira, Sebastião Simões Cunha and G.F. Gomes

The present paper aims at the multi-objective optimization of a reentrant hexagonal cell auxetic structure. In addition, a parametric analysis will be carried out to verify how…

35

Abstract

Purpose

The present paper aims at the multi-objective optimization of a reentrant hexagonal cell auxetic structure. In addition, a parametric analysis will be carried out to verify how each of the design factors impact each of the responses.

Design/methodology/approach

The multi-objective optimization of five different responses of an auxetic model was considered: mass, critical buckling load under compression effort, natural frequency, Poisson's ratio and failure load. The response surface methodology was applied, and a new meta-heuristic of optimization called the multi-objective Lichtenberg algorithm was applied to find the optimized configuration of the model. It was possible to increase the failure load by 26.75% in compression performance optimization. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, the failure load by 28.70% and reduce the mass and Poisson's ratio by 15.97 and 11%, respectively. This paper addresses something new in the scientific world to date when evaluating in a multi-objective optimization problem, the compression and modal performance of an auxetic reentrant model.

Findings

It was possible to find multi-objective optimized structures. It was possible to increase the critical buckling load by 42.82%, and the failure load in compression performance by 26.75%. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%, and decrease the mass by 15.97%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, increase the failure load by 28.70% and reduce the mass and Poisson's ratio by 15.97 and 11%, respectively.

Originality/value

There is no work in the literature to date that performed the optimization of 5 responses simultaneously of a reentrant hexagonal cell auxetic structure. This paper also presents an unprecedented statistical analysis in the literature that verifies how the design factors impact each of the responses.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2021

Qingguo Wen, Pengju Li, Zhengkai Zhang and Hong Hu

This paper aims to clarify the principle of force measurement using the auxetic structure by studying the relationship among the force, the change of transmittance and the change…

Abstract

Purpose

This paper aims to clarify the principle of force measurement using the auxetic structure by studying the relationship among the force, the change of transmittance and the change of output current of the solar cell.

Design/methodology/approach

This paper opted for an exploratory study using combining theory with experiment. This paper analysized the theoretical model and deformation of the auxetic structure. It used a hexagon honeycomb structure as a comparison in the experiment. The experiment was conducted on a universal testing machine, and the data was obtained by a digital acquisition card. The data was analyzed without using any signal processing means.

Findings

This paper provides the linearity and the sensitivity of the proposed force measurement method. It shows a good linear relationship between the input and output of this method and good sensitivity, stability and repeatability without using any signal processing means.

Originality/value

This paper provides new structural insights for force sensors and presents future research directions.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 37