Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 27 December 2021

Hristo Trifonov and Donal Heffernan

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable;…

3132

Abstract

Purpose

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable; thus, limiting the potential capabilities for the Industrial Internet of Things (IIoT). There is no forthcoming new generation fieldbus standard to integrate into the IIoT and Industry 4.0 revolution. The open platform communications unified architecture (OPC UA) time-sensitive networking (TSN) is a potential vendor-independent successor technology for the factory network. The OPC UA is a data exchange standard for industrial communication, and TSN is an Institute of Electrical and Electronics Engineers standard for Ethernet that supports real-time behaviour. The merging of these open standard solutions can facilitate cross-vendor interoperability for Industry 4.0 and IIoT products.

Design/methodology/approach

A brief review of the history of the fieldbus standards is presented, which highlights the shortcomings for current industrial systems in meeting converged traffic solutions. An experimental system for the OPC UA TSN is described to demonstrate an approach to developing a three-layer factory network system with an emphasis on the field layer.

Findings

From the multitude of existing industrial network schemes, there is a convergence pathway in solutions based on TSN Ethernet and OPC UA. At the field level, basic timing measurements in this paper show that the OPC UA TSN can meet the basic critical timing requirements for a fieldbus network.

Originality/value

This paper uniquely focuses on the specific fieldbus standards elements of industrial networks evolution and traces the developments from the early history to the current developing integration in IIoT context.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 21 March 2016

Honglun Huan, Liang Cheng and Yinglin Ke

The purpose of this paper is to present a dual-robot pneumatic riveting system for fuselage panel assembly, including the system design, dynamic analysis and sensitivity analysis…

Abstract

Purpose

The purpose of this paper is to present a dual-robot pneumatic riveting system for fuselage panel assembly, including the system design, dynamic analysis and sensitivity analysis. The dual-robot pneumatic riveting system is designed to improve riveting efficiency and quality, thus finally replace the traditional two-man riveting mode where possible.

Design/methodology/approach

The dual-robot pneumatic riveting system has been designed by considering vibration reduction for the tools and isolation for robots. Nonlinear multi-body dynamic model including clearance and collision is established for investigating the dynamic performance and analyzing the systemic sensitivities with respect to the key variations. Semi-implicit Runge–Kuta algorithm is used for solving the dynamic equations and shop experiments are implemented to verify the effectiveness of the numerical simulations.

Findings

The simulation results show the tools can be held stably enough for riveting operation and the system sensitivity with respect to robot gesture can achieve the expected level. The experiment validates the proposed system with a good performance, and the riveting quality could adequately meet the requirements. The system is capable of installing an aluminum alloy countersunk 5 mm diameter rivet in 5 s.

Practical implications

The dual robot pneumatic riveting system is successfully developed and test. It has been applied in a project of fuselage panel assembly in the aircraft manufacturing industry in China.

Originality/value

To replace the traditional manual rivet installation, this paper presents a dual robot pneumatic riveting system and includes both the system design and dynamic analysis.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 March 2019

Samir Mekid and Salem Bashmal

Novel nanomaterials and nano-devices require further functional aspects that can be designed and supported using new nanomanipulation techniques allowing specific functions at the…

Abstract

Purpose

Novel nanomaterials and nano-devices require further functional aspects that can be designed and supported using new nanomanipulation techniques allowing specific functions at the design phase. The nano-manipulator becomes a key instrument for technology bridging sub-nano to mesoscale. The integration of various operations in nano-devices requires sub-nanometer precision and highly stable manipulator. This paper aims to review various design concepts of recent nanomanipulators, their motion characteristics, basic functions, imagine and automation with control techniques for the sake of establishing new design features based on recent requirements.

Design/methodology/approach

The paper reviews various existing nanomanipulators, their motion characteristics, basic functions, imagine and automation with control techniques. This will support precision machine design methodology and robotics principles.

Findings

The availability of a nano-precision instrument with integrated functions has proved to be extremely helpful in addressing various fundamental problems in science and engineering such as exploring, understanding, modeling and testing nano-machining process; exact construction of nano-structure arrays; and inspection of devices with complex features.

Originality/value

New functional specifications have emerged from this review to support the design and make of new advanced nanomanipulators with more features availability to support manipulation within the same reference datum needed for research and education.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 March 2020

Petrus Sutyasadi and Manukid Parnichkun

The purpose of this paper is to introduce a quadruped robot strategy to avoid tipping down because of side impact disturbance and a control algorithm that guarantees the strategy…

Abstract

Purpose

The purpose of this paper is to introduce a quadruped robot strategy to avoid tipping down because of side impact disturbance and a control algorithm that guarantees the strategy can be controlled stably even in the presence of disturbances or model uncertainties.

Design/methodology/approach

A quadruped robot was developed. Trot gait is applied so the quadruped can be modelled as a compass biped model. The algorithm to find a correct stepping position after an impact was developed. A particle swarm optimization-based structure-specified mixed sensitivity (H2/H) robust is applied to reach the stepping position.

Findings

By measuring the angle and speed of the side tipping after an impact disturbance, a point location for the robot to step or the foothold recovery point (FRP) was successfully generated. The proposed particle swarm optimization-based structure-specified mixed sensitivity H2/H robust control also successfully brought the legs to the desired point.

Practical implications

A traditional H controller synthesis usually results in a very high order of controller. This makes implementation on an embedded controller very difficult. The proposed controller is just a second-order controller but it can handle the uncertainties and disturbances that arise and guarantee that FRP can be reached.

Originality/value

The first contribution is the proposed low-order robust H2/H controller so it is easy to be programmed on a small embedded system. The second is FRP, a stepping point for a quadruped robot after receiving side impact disturbance so the robot will not fall.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 March 2010

Sanjay K. Boddhu and John C. Gallagher

The purpose of this paper is to present an approach to employ evolvable hardware concepts, to effectively construct flapping‐wing mechanism controllers for micro robots, with the…

Abstract

Purpose

The purpose of this paper is to present an approach to employ evolvable hardware concepts, to effectively construct flapping‐wing mechanism controllers for micro robots, with the evolved dynamically complex controllers embedded in a, physically realizable, micro‐scale reconfigurable substrate.

Design/methodology/approach

In this paper, a continuous time recurrent neural network (CTRNN)‐evolvable hardware (a neuromorphic variant of evolvable hardware) framework and methodologies are employed in the process of designing the evolution experiments. CTRNN is selected as the neuromorphic reconfigurable substrate with most efficient Minipop Evolutionary Algorithm, configured to drive the evolution process. The uniqueness of the reconfigurable CTRNN substrate preferred for this study is perceived from its universal dynamics approximation capabilities and prospective to realize the same in small area and low power chips, the properties which are very much a basic requirement for flapping‐wing based micro robot control. A simulated micro mechanical flapping insect model is employed to conduct the feasibility study of evolving neuromorphic controllers using the above‐mentioned methodology.

Findings

It has been demonstrated that the presented neuromorphic evolvable hardware approach can be effectively used to evolve controllers, to produce various flight dynamics like cruising, steering, and altitude gain in a simulated micro mechanical insect. Moreover, an appropriate feasibility is presented, to realize the evolved controllers in small area and lower power chips, with available fabrication techniques and as well as utilizing the complex dynamics nature of CTRNNs to encompass various controls ability in a architecturally static hardware circuit, which are more pertinent to meet the constraints of micro robot construction and control.

Originality/value

The proposed neuromorphic evolvable hardware approach along with its modules intact (CTRNNs and Minipop) can provide a general mechanism to construct/evolve dynamically complex and optimal controllers for flapping‐wing mechanism based micro robots for various environments with least human intervention. Further, the evolved neuromorphic controllers in simulation study can be successfully transferred to its hardware counterpart without sacrificing its anticipated functionality and realized within a predictable area and power ranges.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 November 2019

Manish Kumar Ghodki, Akhilesh Swarup and Yash Pal

The purpose of this paper is to design and develop an IR and sprinkler based embedded controller operated robotic arm for automatic dust removal system to mitigate the dust effect…

Abstract

Purpose

The purpose of this paper is to design and develop an IR and sprinkler based embedded controller operated robotic arm for automatic dust removal system to mitigate the dust effect on the solar panel surface, since dust accumulation normally affected by real weather conditions is one of the serious concern for the deterioration of photovoltaic (PV) system output.

Design/methodology/approach

The system is a wet cleaning device which provides a cheap silicon rubber-based wiping operation controlled by the pulse width modulation-operated motors of robotic arm. The IEEE 1149.1-compliant mixed signal-embedded platform of C8051F226DK is involved to command the complete system.

Findings

A prototype of 30 WP system is capable of producing an inspiring average value of 11.26 per cent in energy increase, 13.63 per cent in PV module efficiency and 85.20 per cent in performance ratio of the system after 73 days of cleaning in summer season. In addition, a total of 1,617.93 W power; 1,0516.55 Wh energy; and 350.55 KWh/KWP final yield was found during the entire cleaning period.

Originality/value

A novel technique of the implementation of IR sensor and sprinkler in dust mitigation is proposed in this paper. The IR sensor is used as a versatile object which can manage the robotic arm setting and control the automatic switching between cleaning and charging, as well as identify the thermal condition of solar panel for overheating.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 March 2011

Kirubakaran Dhandapani and Rama Reddy Sathi

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which…

Abstract

Purpose

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which converts the utility frequency AC power into high‐frequency AC power with an embedded controller. This single stage high‐frequency inverter is composed of a single‐phase diode bridge rectifier, a non‐smoothing filter, a boost‐active clamp bridge type ZVS‐PWM high‐frequency inverter, and an induction‐heated load with planar type litz wire working coil assembly. Also, the paper discusses how to extend the soft‐switching operation ranges and improve power conversion efficiency.

Design/methodology/approach

The proposed converter is simulated and it is implemented using embedded controller.

Findings

It was found that the single stage high‐frequency induction heating (IH) inverter using boosted voltage function can eliminate the DC and low‐frequency components of the working coil current and reduce the power dissipation of the circuit components and switching devices.

Originality/value

The paper shows that the PWM HF inverter is preferred for IH, since it has reduced switching losses and switching stresses. The paper can be extended to PC‐based wireless control, which can be part of a distributed control system in major industrial heating systems.

Details

Journal of Engineering, Design and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 June 2009

Markus Eich, Felix Grimminger and Frank Kirchner

The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot…

1161

Abstract

Purpose

The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters.

Design/methodology/approach

The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities.

Findings

The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot.

Originality/value

Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 2006

Nkgatho Sylvester Tlale

In this paper, two omni‐directional mobile vehicles are designed and controlled implementing distributed mechatronics controllers. Omni‐directionality is the ability of mobile…

1538

Abstract

Purpose

In this paper, two omni‐directional mobile vehicles are designed and controlled implementing distributed mechatronics controllers. Omni‐directionality is the ability of mobile vehicle to move instantaneously in any direction. It is achieved by implementing Mecanum wheels in one vehicle and conventional wheels in another vehicle. The control requirements for omni‐directionality using the two above‐mentioned methods are that each wheel must be independently driven, and that all the four wheels must be synchronized in order to achieve the desired motion of each vehicle.

Design/methodology/approach

Distributed mechatronics controllers implementing Controller Area Network (CAN) modules are used to satisfy the control requirements of the vehicles. In distributed control architectures, failures in other parts of the control system can be compensated by other parts of the system. Three‐layered control architecture is implemented for; time‐critical tasks, event‐based tasks, and task planning. Global variables and broadcast communication is used on CAN bus. Messages are accepted in individual distributed controller modules by subscription.

Findings

Increase in the number of distributed modules increases the number of CAN bus messages required to achieve smooth working of the vehicles. This requires development of higher layer to manage the messages on the CAN bus.

Research limitations/implications

The limitation of the research is that analysis of the distributed controllers that were developed is complex, and that there are no universally accepted tool for conducting the analysis. The other limitation is that teh mathematical models of the mobile robot that have been developed need to be verified.

Practical implications

In the design of omni‐directional vehicles, reliability of the vehicle can be improved by modular design of mechanical system and electronic system of the wheel modules and the sensor modules.

Originality/value

The paper tries to show the advantages of distributed controller for omni‐directional vehicles. To the author's knowledge, that is a new concept.

Details

Industrial Robot: An International Journal, vol. 33 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 3000