Search results

1 – 10 of over 15000
Article
Publication date: 28 May 2021

Supphachai Nathaphan and Worrasid Trutassanawin

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM…

Abstract

Purpose

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) technology on both the dimensional accuracy and the compressive yield stress. Another purpose is to determine the optimum process parameters to achieve the maximum compressive yield stress and dimensional accuracy at the same time.

Design/methodology/approach

The standard cylindrical specimens which produced from ABS by using an FDM 3D printer were measured dimensions and tested compressive yield stresses. The effects of six process parameters on the dimensional accuracy and compressive yield stress were investigated by separating the printing orientations into horizontal and vertical orientations before controlling five factors: nozzle temperature, bed temperature, number of shells, layer height and printing speed. After that, the optimum process parameters were determined to accomplish the maximum compressive yield stress and dimensional accuracy simultaneously.

Findings

The maximum compressive properties were achieved when layer height, printing speed and number of shells were maintained at the lowest possible values. The bed temperature should be maintained 109°C and 120°C above the glass transition temperature for horizontal and vertical orientations, respectively.

Practical implications

The optimum process parameters should result in better FDM parts with the higher dimensional accuracy and compressive yield stress, as well as minimal post-processing and finishing techniques.

Originality/value

The important process parameters were prioritized as follows: printing orientation, layer height, printing speed, nozzle temperature and bed temperature. However, the number of shells was insignificant to the compressive property and dimensional accuracy. Nozzle temperature, bed temperature and number of shells were three significant process parameters effects on the dimensional accuracy, while layer height, printing speed and nozzle temperature were three important process parameters influencing compressive yield stress. The specimen fabricated in horizontal orientation supported higher compressive yield stress with wide processing ranges of nozzle and bed temperatures comparing to the vertical orientation with limited ranges.

Article
Publication date: 5 September 2020

André Luiz Alves Guimarães, Vicente Gerlin Neto, Cesar Renato Foschini, Maximiliano dos Anjos Azambuja and Luiz Antonio Vasques Hellmeister

The purpose of this paper is to investigate and discuss the influence of printing parameters on the mechanical properties of acrylonitrile butadiene styrene (ABS) print by fused…

Abstract

Purpose

The purpose of this paper is to investigate and discuss the influence of printing parameters on the mechanical properties of acrylonitrile butadiene styrene (ABS) print by fused deposition modelling (FDM). The mechanical properties of ABS are highly influenced by printing parameters, and they determine the final product quality of printed pieces.

Design/methodology/approach

For the paper’s purpose, five main parameters (extrusion temperature, infill pattern, air gap, printing speed and layer thickness) were selected and varied during ABS printing on an open-source and self-replicable FDM printer. Three different colors of commercially available ABS were also used to investigate color and printing parameter’s influence on the tensile strength.

Findings

The research results suggest that two parameters (infill pattern and layer thickness) were most influential on the mechanical properties of print ABS, being able to enhance its tensile strength. Another key influential factor was material color selected prior to printing, which influenced the tensile strength of the print specimen.

Originality/value

This study provides information on print parameters’ influence on the tensile strength of ABS print on replicable open-source three-dimensional (3D) printers. It also suggests the influence of materials’ color on print pieces’ tensile strength, indicating a new parameter for materials selection for 3D printing.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 February 2022

Cho-Pei Jiang, Yung-Chang Cheng, Hong-Wei Lin, Yu-Lee Chang, Tim Pasang and Shyh-Yuan Lee

Polyetheretherketone (PEEK) is used to manufacture biomedical implants because it has a high strength-to-weight ratio and high strength and is biocompatible. However, the use of…

Abstract

Purpose

Polyetheretherketone (PEEK) is used to manufacture biomedical implants because it has a high strength-to-weight ratio and high strength and is biocompatible. However, the use of fused deposition modeling to print a PEEK results in low strength and crystallinity. This study aims to use the Taguchi method to optimize the printing factors to obtain the highest tensile strength of the printed PEEK object. The annealing effect on printed PEEK object and crystallinity are also investigated.

Design/methodology/approach

This study determines the printing factors including the printing speed, layer thickness, printing temperature and extrusion width. Taguchi experimental design with a L9 orthogonal array is used to print the tensile specimen and carried out the tensile test to compare the tensile strength and porosity. Analysis of variance (ANOVA) is used to determine the experimental error and to determine the optimization printing parameters to obtain the highest tensile strength. A multivariate linear regression analysis is used to obtain the linear regression equation for predicting the theoretical tensile strength. An X-ray analysis is achieved to evaluate the crystalline of printed object. The effect of annealing is investigated to improve the tensile strength of printed part. An intervertebral lumber device is printed to demonstrate the feasibility of the obtained optimization parameters for practical application.

Findings

Taguchi experiment designs nine sets of parameters to print the PEEK tensile specimen. The experimental results and the ANOVA present that the order in which the factors affect the tensile strength for printed PEEK parts is the layer thickness, the extrusion width, the printing speed and the printing temperature. The optimized printing parameters are a printing speed of 5 mm/s, a layer thickness of 0.1 mm, a printing temperature of 395 °C and an extrusion strand width of 0.44 mm. The average tensile strength of printed specimen with the optimized printing parameters is 91.48 MPa, which is slightly less than the theoretical predicted value of 94.34 MPa. After annealing, the tensile strength increases to 98.85 MPa, which is comparable to that for molded PEEK and the porosity decreases to 0.3 from 3.9%. X-ray diffraction results show that all printed and annealed specimens have a high degree of crystallinity. The printed intervertebral lumber device has ultimate compressive load of 13.42 kN.

Originality/value

The optimized printing parameters is suitable for low-price fused deposition modeling machine because it does not involve a table at high temperature and can print the PEEK object with high tensile strength and good crystalline. Annealing parameters offer a good solution for tensile strength improvement.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 February 2022

Chun-Sheng Chen, Hai Wang, Yung-Chin Kao, Po-Jen Lu and Wei-Ren Chen

This paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount…

Abstract

Purpose

This paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount technology (SMT) to better understand the effect of process parameters on the printing quality.

Design/methodology/approach

An experiment plan is proposed based on the response surface method (RSM). Experiments with 30 different combinations of process parameters are performed using a solder paste printer. After printing, the volume, area and height of the printed SAC105 solder paste are measured by a solder paste inspection machine. Using RSM, the predictive equations associated with the printing parameters and the printing quality of the solder paste are formed.

Findings

The optimal printing parameters are 175.08 N printing pressure, 250 mm/s printing speed, 0.1 mm snap-off height and 15.7 mm/s stencil snap-off speed if the target height of solder paste is 100 µm. As the target printing area of solder paste is 1.1 mm × 1.3 mm, the optimized values of the printing parameters are 140.29 N, 100.52 mm/s, 0.63 mm and 20.25 mm/s. When both the target printing height and area are optimized together, the optimal values for the four parameters are 86.67 N, 225.76 mm/s, 0.15 mm and 1.82 mm/s.

Originality/value

A simple RSM-based experimental method is proposed to formulate the predictive polynomial equations for height, area and volume of printed solder paste in terms of important SPSP parameters. The predictive equation model can be applied to the actual SPSP process, allowing engineers to quickly predict the best printing parameters during parameter setting to improve production efficiency and quality.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 February 2021

Ali Alperen Bakır, Resul Atik and Sezer Özerinç

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used…

1001

Abstract

Purpose

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing.

Design/methodology/approach

The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented.

Findings

Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better.

Practical implications

Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components.

Originality/value

This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Baixi Chen, Weining Mao, Yangsheng Lin, Wenqian Ma and Nan Hu

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and…

Abstract

Purpose

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and environmental factors during manufacturing, the FDM parts inevitably demonstrated uncertainty in properties and performance. This study aims to identify the stochastic constitutive behaviors of FDM-fabricated polylactic acid (PLA) tensile specimens induced by the manufacturing process.

Design/methodology/approach

By conducting the tensile test, the effects of the printing machine selection and three major manufacturing parameters (i.e., printing speed S, nozzle temperature T and layer thickness t) on the stochastic constitutive behaviors were investigated. The influence of the loading rate was also explained. In addition, the data-driven models were established to quantify and optimize the uncertain mechanical behaviors of FDM-based tensile specimens under various printing parameters.

Findings

As indicated by the results, the uncertain behaviors of the stiffness and strength of the PLA tensile specimens were dominated by the printing speed and nozzle temperature, respectively. The manufacturing-induced stochastic constitutive behaviors could be accurately captured by the developed data-driven model with the R2 over 0.98 on the testing dataset. The optimal parameters obtained from the data-driven framework were T = 231.3595 °C, S = 40.3179 mm/min and t = 0.2343 mm, which were in good agreement with the experiments.

Practical implications

The developed data-driven models can also be integrated into the design and characterization of parts fabricated by extrusion and other additive manufacturing technologies.

Originality/value

Stochastic behaviors of additively manufactured products were revealed by considering extensive manufacturing factors. The data-driven models were proposed to facilitate the description and optimization of the FDM products and control their quality.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 January 2023

Mohammad Saleh Afsharkohan, Saman Dehrooyeh, Majid Sohrabian and Majid Vaseghi

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available…

Abstract

Purpose

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available market filaments do not contain any exact information report for printing settings, manufacturers are incapable of achieving desirable predefined print accuracy and mechanical properties for the final parts. The purpose of this study is to determine the importance of selecting suitable print parameters by understanding the intrinsic behavior of the material to achieve high-performance parts.

Design/methodology/approach

Two common commercial polylactic acid filaments were selected as the investigated samples. To study the specimens’ printing quality, an appropriate scaffold geometry as a delicate printing sample was printed according to a variety of speeds and nozzle temperatures, selected in the filament manufacturer’s proposed temperature range. Dimensional accuracy and qualitative surface roughness of the specimens made by one of the filaments were evaluated and the best processing parameters were selected. The scaffolds were fabricated again by both filaments according to the selected proper processing parameters. Material characterization tests were accomplished to study the reason for different filament behaviors in the printing process. Moreover, the correlations between the polymer structure, thermo-rheological behavior and printing parameters were denoted.

Findings

Compression tests revealed that precise printing of the characterized filament results in more accurate structure and subsequent improvement of the final printed sample elastic modulus.

Originality/value

The importance of material characterization to achieve desired properties for any purpose was emphasized. Obtained results from the rheological characterizations would help other users to benefit from the highest performance of their specific filament.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 July 2021

Rana El-Dabaa and Islam Salem

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy…

331

Abstract

Purpose

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy buildings. This paper aims to exploit wooden responsive actuators as a passive approach for adaptive facades with dynamic shading configurations. Wooden passive actuators are introduced as a passive responsive mechanism with zero-energy consumption.

Design/methodology/approach

The study encodes the embedded hygroscopic parameters of wood through 4D printing of wooden composites as a responsive wooden actuator. Several physical experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing grain patterns and infill height on the wooden angle of curvature when exposed to variation in humidity. The printed hygroscopic parameters are applied on two types of wooden actuators with difference in the saturation percentage of wood in the wooden filaments specifically 20% and 40% for more control on the angle of curvature and response behavior.

Findings

The study presents the ability to print wooden grain patterns that result in single and double curved surfaces. Also, printing actuators with variation in infill height control each part of wooden actuator to response separately in a controlled passive behavior. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero-energy consumption through utilizing both material science and additive manufacturing mechanisms.

Originality/value

The study presents a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of printed wood to humidity instead of the typical natural properties of wood.

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 July 2022

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

Masked stereolithography (MSLA) or resin three-dimensional (3D) printing is one of the most extensively used high-resolution additive manufacturing technologies. Even though, the…

Abstract

Purpose

Masked stereolithography (MSLA) or resin three-dimensional (3D) printing is one of the most extensively used high-resolution additive manufacturing technologies. Even though, the quality of 3D printing is determined by several factors, including the equipment, materials and slicer. Besides, the layer height, print orientation and exposure time are important processing parameters in determining the quality of the 3D printed green state specimen. The purpose of the paper is to optimize the printing parameters of the Masked Stereolithography apparatus for its dimensional correctness of 3D printed parts using the Taguchi method.

Design/methodology/approach

The acrylate-based photopolymer resin is used to produce the parts using liquid crystal display (LCD)-type resin 3D printer. This study is mainly focused on optimizing the processing parameters by using Taguchi analysis, L-9 orthogonal array in Minitab software. Analysis of variance (ANOVA) was performed to determine the most influencing factors, and a regression equation was built to predict the best potential outcomes for the given set of parameters and levels. The signal-to-noise ratios were calculated by using the smaller the better characteristic as the deviations from the nominal value should be minimum. The optimal levels for each factor were determined with the help of mean plots.

Findings

Based on the findings of ANOVA, it was observed that exposure time plays an important role in most of the output measures. The model’s goodness was tested using a confirmation test and the findings were found to be within the confidence limit. Also, a similar specimen was printed using the fused filament fabrication (FFF) technique; it was compared with the quality and features of MSLA 3D printing technology.

Practical implications

The study presents the statistical analysis of experimental results of MSLA and made a comparison with FFF in terms of dimensional accuracy and print quality.

Originality/value

Many previous studies reported the results based on earlier 3D printing technology such as stereolithography but LCD-based MSLA is not yet reported for its dimensional accuracy and part quality. The presented paper proposes the use of statistical models to optimize the printing parameters to get dimensional accuracy and the good quality of the 3D printed green part.

1 – 10 of over 15000