Search results

1 – 10 of 14
Article
Publication date: 10 July 2017

R. Rashidi Meybodi, M. Zare Mehrjardi and A.D. Rahmatabadi

The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three…

Abstract

Purpose

The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three and four lobe journal bearings.

Design/methodology/approach

Reynolds equation in dynamic state is modified considering the micropolarity characteristics of lubricant, and it is solved using generalized differential quadrature method. The perturbed components of the dynamic pressure are extracted based on the linear dynamic model. To explain the transient state of the governing equation, through the linear dynamic approach, the whirling motion of rotor around the steady state position is assumed to be harmonic.

Findings

It is observed from the results that tilt angle has significant effects on the steady state and stability performance of lobed journal bearings. It may be selected suitably to improve the performance of rotor-bearing system, while all other lubricant properties and noncircular bearing design parameters are kept fixed. Results show that among the three types of bearings considered, the dynamic performance of two lobe bearings are more affected by the variation of tilt angle.

Originality/value

The present study is mainly concerned with the effects of tilt angle as a design parameter on the stability performance of a hydrodynamic noncircular journal bearing lubricated with micropolar fluid.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2013

A.D. Rahmatabadi, M. Dehghanizade Baghdadabadi and S.M. Almodarresi

The purpose of this paper is to investigate the performance of noncircular five lobe gas lubricated bearings, making use of the efficiency and simplicity of artificial neural…

Abstract

Purpose

The purpose of this paper is to investigate the performance of noncircular five lobe gas lubricated bearings, making use of the efficiency and simplicity of artificial neural networks (ANNs). The effects of different parameters such as compressibility number, mount and tilt angle on static and dynamic characteristics of such bearings are studied.

Design/methodology/approach

For this purpose, various three‐layer neural network models, using Levenberg‐Marquardt method, are selected for training.

Findings

The results obtained as neural network outputs compared with those reported results from finite element method (FEM) for two, three and four lobe journal bearings, are very close. The results for five lobe journal bearing show that the effect of tilt and mount angles on the stability of the bearing system are marginal, while low compressibility number can have more influence on the performance of such bearing systems.

Originality/value

The paper shows that for the performance analysis of gas lubricated journal bearing systems which are cumbersome, due to nonlinearity of their pressure equation, ANNs can be used effectively.

Details

Industrial Lubrication and Tribology, vol. 65 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

Satish C. Sharma, Vikas M. Phalle and S.C. Jain

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a…

Abstract

Purpose

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a number of years and are submitted to several stops and starts. As a result, the bush becomes progressively worn out and the bearing performance changes. The purpose of this paper is to study theoretically the influence of wear on the performance of a non‐circular 2‐lobe four‐pocket multirecess hybrid journal bearing system.

Design/methodology/approach

The Reynolds equation governing the flow of lubricant in the clearance space of a non‐circular 2‐lobe multirecess worn hybrid journal bearing system has been solved using FEM along with appropriate boundary conditions. The defects caused by wear are centered on the load line and range from 10 per cent to 50 per cent of the bearing radial clearance.

Findings

The numerically simulated results based on a Newtonian lubricant and the steady state flow field system have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness and damping coefficients and stability threshold speed margin. The paper demonstrates that, for the bearing configurations studied, the bearing behavior is clearly affected by wear. The numerically simulated results indicate that for an offset factor of δ=1.2, the value of min reduces by 21.21 per cent at δ¯w=0.5.

Originality/value

The presented results have valuable data in case of 2‐lobe four pocket hybrid journal bearing compensated with constant flow valve restrictor. The paper outcomes are sure to be of interest for researchers and useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

R. Rashidi Meybodi, A. Rasoolizadeh Shooroki and M. Zare Mehrjardi

The purpose of this study is to examine the thermo-hydrodynamic performance of tilted non-circular journal bearings lubricated with a micropolar fluid. The investigated bearing

Abstract

Purpose

The purpose of this study is to examine the thermo-hydrodynamic performance of tilted non-circular journal bearings lubricated with a micropolar fluid. The investigated bearing types are two- and three-lobe journal bearings with finite length.

Design/methodology/approach

For this purpose, modified Reynolds, energy and three-dimensional Laplace equations are solved numerically by using generalized differential quadrature method. The effects of micropolarity characteristics of lubricants, such as characteristic length and coupling number, as well as tilt angle as a design parameter, on the performance of non-circular two- and three-lobe journal bearings are studied.

Findings

The results show that the tilt angle can affect the temperature and pressure profiles causing variation in the performance of non-circular bearings. Increasing coupling number and decreasing characteristic length cause the load-carrying capacity to decrease because of the increase in maximum oil temperature of the fluid film of lubricant and decrease in the minimum oil base viscosity. So, it is possible to select suitable values of tilt angle for achieving optimum performance of these bearings.

Originality/value

The non-circular bearings suggest several design parameters such as tilt angle for designers. By considering thermal effects for micropolar lubricant, the requirements of a specific application can be fulfilled.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2013

M. Nekoeimehr, A.D. Rahmatabadi and R. Rashidi

The purpose of this paper is to analyse the static performance characteristics of lobe journal bearings lubricated with a micropolar fluid, considering effect of non‐circularity…

Abstract

Purpose

The purpose of this paper is to analyse the static performance characteristics of lobe journal bearings lubricated with a micropolar fluid, considering effect of non‐circularity. Number of lobes and their preload value are the non‐circularity parameters considered in the present study. The bearings undertaken for the investigation are two, three and four‐lobe symmetric journal bearings with finite width.

Design/methodology/approach

For this purpose, modified form of Reynolds equation is derived, based on Eringen's micropolar fluid theory and it is solved numerically using finite element method (FEM). The effect of the non‐circularity parameters of bearings on the steady‐state performance characteristics such as load carrying capacity, attitude angle, coefficient of friction and side leakage flow are presented and discussed.

Findings

The results show that the number of lobes and their preload value can influence the performance of lobe bearings. It is seen that, in order to provide certain improvement over simple cylindrical bearings, the non‐circularity parameters of lobe bearings must be chosen correctly. There is no single optimum profile for multi‐lobe bearing application.

Originality/value

Lobe bearings, compared with simple circular bearings, offer several geometric parameters to designers. These parameters must be chosen correctly, so that the requirements of a specific application can be fulfilled.

Details

Industrial Lubrication and Tribology, vol. 65 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2018

Pankaj Khatak and H.C. Garg

Hybrid journal bearing have long been used in machines requiring large load and high speed capacity operating under wide range of temperatures. Different compensating devices are…

Abstract

Purpose

Hybrid journal bearing have long been used in machines requiring large load and high speed capacity operating under wide range of temperatures. Different compensating devices are used in for efficient operation of bearings. This paper aims to help in selection of optimum compensating device by evaluating the comparative performance of constant flow valve, capillary compensated and slot entry hybrid journal bearing under the combined influence of thermal effects and micropolar nature of lubricant.

Design/methodology/approach

The variation in micropolar parameters and viscosity change due to temperature increase of lubricant are considered in present study. Finite element method is used for combined iterative solution of micropolar Reynolds, energy and conduction equations. Micropolar lubricant is assumed to be governed by two parameters, coupling number and characteristic length. The results in the study are presented for symmetric and asymmetric configurations of hole entry and slot entry non-recessed hybrid journal bearings

Findings

The results indicate that constant flow valve compensated hole entry hybrid journal bearing is the highest performing bearing for the given range of micropolar parameters of lubricant in terms of maximum fluid pressure and dynamic coefficients.

Originality/value

The performance variations of various configurations of hybrid journal bearing are presented in a single paper. The reader can get overview of combined effects of micropolar parameters and viscosity decrease due to temperature increase of the lubricant.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

Boualem Chetti

The performance of finite circular journal bearing lubricated with micropolar fluids taking into account the elastic deformation of the bearing liner is presented. The paper aims…

Abstract

Purpose

The performance of finite circular journal bearing lubricated with micropolar fluids taking into account the elastic deformation of the bearing liner is presented. The paper aims to discuss these issues.

Design/methodology/approach

The modified Reynolds equation is obtained using the micropolar lubrication theory. The solution of the modified Reynolds equation is determined using finite difference technique. The static characteristics in terms of load-carrying capacity, attitude angle, side leakage and friction coefficient for micropolar and Newtonian fluids are determined for various values of eccentricity ratio and different values of elastic coefficient.

Findings

Compared with Newtonian fluids, the micropolar fluids produce an increase in the load-carrying capacity and a reduction in the attitude angle, the friction factor and side leakage for both the rigid and deformable bearings.

Originality/value

It is concluded that the influence of elastic deformation on the bearing characteristics lubricated with micropolar fluids is significantly apparent compared with bearing lubricated with Newtonian fluids.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

M.M. Shahin, Mohammad Asaduzzaman Chowdhury, Md. Arefin Kowser, Uttam Kumar Debnath and M.H. Monir

The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain…

Abstract

Purpose

The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain, total deformation and stress formation.

Design/methodology/approach

A journal bearing test rig was used to determine the effect of the applied load on the bearing friction, film thickness, lubricant film pressure, etc. A steady-state analysis was performed to obtain the bearing performance.

Findings

An efficient aspect ratio (L/D) range was obtained to increase the durability or the stability of the bearing while the bearing is in the working condition by using SAE 5W-30 oil. The results from the study were compared with previous studies in which different types of oil and water, such as Newtonian fluid (NF), magnetorheological fluid (MRF) and nonmagnetorheological fluid (NMRF), were used as the lubricant. To ensure a preferable aspect ratio range (0.25-0.50), a computational fluid dynamics (CFD) analysis was conducted by ANSYS; the results show a lower elastic strain and deformation within the preferable aspect ratio (0.25-0.50) rather than a higher aspect ratio using the SAE 5W-30 oil.

Originality/value

It is expected that the findings of this study will contribute to the improvement of the bearing design and the bearing lubricating system.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Chandra B. Khatri and Satish C. Sharma

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal…

Abstract

Purpose

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing.

Design/methodology/approach

In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique.

Findings

The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing.

Originality/value

The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 December 2023

Sanyam Sharma and Rajiv Verma

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Abstract

Purpose

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Design/methodology/approach

To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.

Findings

The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.

Originality/value

In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 14