Search results

1 – 10 of over 2000
Article
Publication date: 1 June 2021

Baopeng Zhang, Xuesong Han, Changpeng Chen, Wenqi Zhang, Hailong Liao and Baijin Chen

The purpose of this study is to investigate the effect of the strut size and tilt angle on the densification behavior, surface roughness and dimensional accuracy of the selective…

Abstract

Purpose

The purpose of this study is to investigate the effect of the strut size and tilt angle on the densification behavior, surface roughness and dimensional accuracy of the selective laser melting AlSi10Mg lattice structure was investigated in this study. In this study, the characteristics such as the density, up-skin and down-skin roughness and dimensional accuracy of selective laser melting forming technology manufacturing (SLMed) AlSi10Mg cellular lattice structure were carried. This work reveals the effect of the strut size and tilt angle on the geometric characteristics of SLMed AlSi10Mg and is benefit for controlling the forming performance of the SLMed cellular lattice structure.

Design/methodology/approach

Based on AlSi10Mg powder, the influence of the tilt angle changed from 10° to 45° with an increment of 5° were investigated, the influence of the strut size was varied from 0.4 mm to 1.2 mm with an increment of 0.2 mm were investigated. The characteristics such as the density, up-skin and down-skin roughness, dimensional accuracy and mechanical properties of SLM-ed AlSi10Mg cellular lattice structure was carried.

Findings

Greater than 99% relative density can be achieved for different strut size when optimal process parameters are used. In the optimized process interval, the struts with a tilt angle of 10° can still be formed well, which is higher than the design limit of the inclined angle given in the related literature. The tilt angle has a significant effect on the surface roughness of the strut. The microhardness reached to 157 ± 3 HV, and the maximum compressive strength was 58.86 MPa, with the optimal process parameters.

Originality/value

In this study, the characteristics such as the density, up-skin and down-skin roughness and dimensional accuracy of SLMed AlSi10Mg cellular lattice structure were carried. With the optimal geometric parameters, the authors tested microhardness and compressive strength of the cellular lattice structure. The results of this study provide theoretical and experimental basis for the realization of high-quality manufacturing and optimization design of aluminum alloy cellular lattice structure, which will meet more diversified industrial needs.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 July 2018

Yikang Du, Kuanmin Mao, Hongqi Liu, Xiaobo Mao and Zhihang Li

This paper aims to present a simplified method to predict the pressure of the recess, no matter whether the tilt center coincides with the geometric center of the hydrostatic…

Abstract

Purpose

This paper aims to present a simplified method to predict the pressure of the recess, no matter whether the tilt center coincides with the geometric center of the hydrostatic journal bearings.

Design/methodology/approach

To validate the effectiveness of the presented model, computational fluid dynamics (CFD) method and experimental method are performed in this study.

Findings

By comparing the CFD results and the experimental results, the pressure of the recess is related to the tilt direction, the tilt center, the width of the land and the circumferential angle of the land.

Originality/value

The mathematic model requires equivalent resistance of land edge – tilt position, tilt direction, tilt angle and the thickness of oil film instead of any digital iteration. Furthermore, a novel experimental apparatus including a circular hydrostatic bearing called ball bearing is designed to study the tilt effect produced by manufacturing error and offset load force on the pressure of the recess.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1949

J.K. Zbrozek

THE present paper gives, in abbreviated form, the theory of blade motion and of static and dynamic stability of single‐rotor helicopters. Limitations of space do not permit of…

64

Abstract

THE present paper gives, in abbreviated form, the theory of blade motion and of static and dynamic stability of single‐rotor helicopters. Limitations of space do not permit of full discussion and the article should be taken as only an introduction to the somewhat complex problems of helicopter stability and control.

Details

Aircraft Engineering and Aerospace Technology, vol. 21 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 September 2021

Yuezong Wang, Jinghui Liu, Mengfei Guo and LiuQIan Wang

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is…

Abstract

Purpose

A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer.

Design/methodology/approach

First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy.

Findings

The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures.

Originality/value

Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 October 2020

Naser Waheeb Alnaser and Waheeb Essa Alnaser

This paper allows more accurate estimation of the economy in investing in PV electrification for buildings, especially for Gulf Cooperation Council Countries (GCCC) where they…

Abstract

Purpose

This paper allows more accurate estimation of the economy in investing in PV electrification for buildings, especially for Gulf Cooperation Council Countries (GCCC) where they have nearly similar climate and building structure. The actual solar electricity yield from this building is used to make empirical modelling.

Design/methodology/approach

The accurate automated daily-recorded solar electricity from 8.64 kW solar PV on a rooftop of Sadeem Building at Awali, Bahrain, was modelled to polynomial equations of order of 6. The effect of the tilt (β) and azimuth (Ψ) angle of PV panels for smart and sustainable buildings is studied.

Findings

The correlation of each set of polynomial equation (R2) is listed and had reached a highest value of 0.9792 (for order of 6) with lowest value of 0.1853 (for order of 1). The model may be also applied to the GCCC. The results show that each kW of PV will have a solar electricity yield, on average, of 4.1 kWh. It also shows that the tilt angle has little influence on the solar electricity yield (less than 10%) when the tilt angle changed from 26° to 0° or from 26° to 50°. The influence of the azimuth angle is found to be more than 50% in changing Ψ from 90° to 180°.

Research limitations/implications

The model may not be restricted to Bahrain but applies – to a certain extent – to GCCC (six countries) and to other countries having buildings with similar roof design and at latitude close to the latitude of Bahrain.

Practical implications

The model enables developers and investors to estimate, with high accuracy, the solar electricity provided from a building if PV panels are to be installed on its rooftop (or facade) at different tilt (β) and azimuth (Ψ) angle for smart and sustainable buildings.

Social implications

Empirically finding out how much each kW of solar PV integrated to the building will produce solar energy electricity (in kWh), that is, 1 kW of PV yield, on average, 4.1 kWh.

Originality/value

Establishing empirical models to evaluate the outcome of each installed kW of PV panels. Each 1 kW installation of PV panels is 4.0 kWh/day, on average. This is less than what commercial companies claim for this region, that is, 1 kW produces 5.5 kWh/ day – which affects the estimated economic outcome of PV projects.

Details

Smart and Sustainable Built Environment, vol. 11 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 10 July 2017

R. Rashidi Meybodi, M. Zare Mehrjardi and A.D. Rahmatabadi

The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three…

Abstract

Purpose

The purpose of this paper is to study tilt angle effects as design parameters of noncircular bearings, on the linear dynamic analyses of micropolar lubricated circular, two, three and four lobe journal bearings.

Design/methodology/approach

Reynolds equation in dynamic state is modified considering the micropolarity characteristics of lubricant, and it is solved using generalized differential quadrature method. The perturbed components of the dynamic pressure are extracted based on the linear dynamic model. To explain the transient state of the governing equation, through the linear dynamic approach, the whirling motion of rotor around the steady state position is assumed to be harmonic.

Findings

It is observed from the results that tilt angle has significant effects on the steady state and stability performance of lobed journal bearings. It may be selected suitably to improve the performance of rotor-bearing system, while all other lubricant properties and noncircular bearing design parameters are kept fixed. Results show that among the three types of bearings considered, the dynamic performance of two lobe bearings are more affected by the variation of tilt angle.

Originality/value

The present study is mainly concerned with the effects of tilt angle as a design parameter on the stability performance of a hydrodynamic noncircular journal bearing lubricated with micropolar fluid.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Wenjing Zhang, Wei Chen and Zhe Liu

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Abstract

Purpose

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Design/methodology/approach

A series of orthogonal experiments would need to be planned and performed. A ranking of impact degree of factors on edge effect and eccentric load effect can be learned with multivariate analysis of variance by Statistical Product and Service Solutions software. Influence rules of each individual factor can also be obtained through more experiments. A roller surface phase diagram both before and after test can be observed with metallographic microscope. An axial profile data of roller can be measured by PGI 3D Profiler, then a roller generatrix contour can be achieved through filtering measured signal with empirical mode decomposition method.

Findings

Slip fraction has most impact on edge effect, whereas tilting angle plays a key role in eccentric load effect. For the case of low temperature, skidding damage does not occur. Inversely, because of the high pressure in partial elastohydrodynamic lubrication caused by roller tilt, running-in occurs and micro asperity flattening is observed on a rough surface. And, the larger the tilting angle, the more obvious the micro-flattening and the greater the reduction of roller surface roughness after the test.

Originality/value

A lot of theoretical studies on thermal effect of roller bearings surface morphology have been published. However, there are little on relevant experimental study, especially on thermal effect with an integration of sliding, tilting and unbalance loading.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1991

Changhae Park, Kevin M. Klein, Al F. Tasch, Robert B. Simonton, Steve Novak and Gayle Lux

A comprehensive and computationally efficient modeling strategy for the rapid and accurate simulation of implanted impurity distribution profiles in single‐crystal silicon has…

Abstract

A comprehensive and computationally efficient modeling strategy for the rapid and accurate simulation of implanted impurity distribution profiles in single‐crystal silicon has been developed. This modeling strategy exploits the advantages of both Monte Carlo simulation and semi‐empirical models by combining the two approaches in a complementary manner. The dual Pearson semi‐empirical model is used to accurately and efficiently model the dose and implant angle dependence of impurity profiles as well as the dependence on energy. This new comprehensive model allows convenient and accurate simulation of implanted boron distribution profiles in single‐crystal silicon as a function of dose, tilt angle, and rotation angle, in addition to ion energy, and it has been demonstrated by implementation in the process simulation code SUPREM III.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 10 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 29 June 2021

Javad Tayebi, Chao Han and Yuanjin Yu

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile…

83

Abstract

Purpose

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile maneuvering compared to conventional control moment gyro due to frictionless, low vibration and long lifetime. This system does not require a separate steering law for pyramid arrangement to derive tilt angles. It is also conducting an agile maneuver with high accuracy despite the high-frequency disturbances.

Design/methodology/approach

In this paper, a disturbance observer-based attitude stabilization method is proposed for an agile satellite with a pyramid cluster of the novel 3D magnetically suspended wheel actuator. This strategy includes a disturbance observer and a linear quadratic regulator controller. The rotor shaft deflection of MSW is actively controlled to reduce vibration and producing gyro torque. The deflection angle of the pyramid cluster MSWs considered as control parameters. The closed-loop stability is proved by using the Lyapunov strategy. The efficiency and performance of the offered method verified by numerical simulation via MATLAB/SIMULINK software.

Findings

According to simulation results, the disturbance observer-based control controller stabilized the system with high accuracy and optimal tilt angles without any extra steering law equation. Hence, the system speed is increased, and the system error is minimized without separate steering law.

Practical implications

The magnetically suspended wheel is a new kind of inertia actuator for attitude control that has several benefits such as frictionless, high-speed rotor, clean environment and low vibration compared to the traditional wheel. It has complex nonlinear dynamics that cause have complicated controller design. The proposed strategy stabilizes the system and conducting an agile maneuver with high precision despite the high-frequency disturbances. It is applicable for some missions requiring high accuracies, like Earth observation and the solar observation mission that require a very accurate pointing control and a long lifetime.

Originality/value

This paper is the initial paper to design a pyramid array for magnetically suspended wheels. Compared to other research, this method doesn’t need a separate steering law of the MSWs cluster and presented optimal tilt angles with less computational. Also, it designs a disturbance observer-based controller for this system that proposed high accuracy and agile stabilization.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 May 2019

Girish Hariharan and Raghuvir Pai

This study aims to investigate the performance characteristics of an externally adjustable bearing with multiple pads in steady state conditions. The proposed adjustable bearing…

Abstract

Purpose

This study aims to investigate the performance characteristics of an externally adjustable bearing with multiple pads in steady state conditions. The proposed adjustable bearing geometry can effectively control the hydrodynamic operation in bearing clearances by adjusting the pads in radial and tilt directions. These pad adjustments have a significant role in improving the bearing characteristics such as load capacity, attitude angle, side leakage, friction variable and Sommerfeld number, which will be analysed in this paper.

Design/methodology/approach

The adjustable bearing is designed with circumferentially spaced four bearing pads subjected to similar radial and tilt adjustments. Tilt angles are applied along the leading edges of bearing pads. A modified film thickness equation is used to incorporate the pad adjustments and accurately predict the variation in film profile. Finite difference approximation is adopted to solve the Reynolds equation and discretize the fluid film domain.

Findings

For negative radial and tilt adjustments, higher hydrodynamic pressures are generated in bearing clearances, which increases the bearing load capacity at different eccentricity ratios. From comparative analysis for different pad adjustments, superior bearing performance is observed for bearing pads under negative radial and negative tilt adjustments.

Originality/value

This research presents a detailed theoretical approach to analyse the performance capability of a four pad adjustable bearing geometry, which is not available in literatures. Improved bearing performances with negative pad adjustments can attract bearing designers to implement the proposed adjustability-bearing concept in rotating machineries.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000